
MATLAB® Builder for
Java™

The Language of Technical Computing

Computation

Visualization

Programming

User’s Guide
Version 1



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Builder for Java User’s Guide

© COPYRIGHT 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 1.0



Contents

Getting Started

1
What Is MATLAB Builder for Java? . . . . . . . . . . . . . . . . . . 1-2

Support for MATLAB Features in Java . . . . . . . . . . . . . . . . 1-2
Known Issue in Data Returned by toArray Referencing

Sparse Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Using the Deployment Tool . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Creating a Java Component . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Using the Command-Line Interface . . . . . . . . . . . . . . . . . . . 1-6

Developing an Application . . . . . . . . . . . . . . . . . . . . . . . . . 1-12

Deploying an Application . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14

Example: Magic Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Magic Square Example: Step-by-Step Procedure . . . . . . . . 1-15

Understanding the Magic Square Example . . . . . . . . . . . 1-23
Importing Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Creating an Instance of the Class . . . . . . . . . . . . . . . . . . . . 1-23
Calling Class Methods from Java . . . . . . . . . . . . . . . . . . . . . 1-23

For More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25

Concepts

2
What Is a Project? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Classes and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

iii



How Does MATLAB Builder for Java Handle Data? . . . 2-4
Understanding the API Data Conversion Classes . . . . . . . 2-4
Automatic Conversion to MATLAB Types . . . . . . . . . . . . . . 2-5
Understanding Function Signatures Generated by Java

Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Returning Data from MATLAB to Java . . . . . . . . . . . . . . . . 2-7

What Happens in the Build Process? . . . . . . . . . . . . . . . . 2-9

What Happens in the Package Process? . . . . . . . . . . . . . . 2-10

How Does Component Deployment Work? . . . . . . . . . . . . 2-11

Programming

3
Import Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Creating an Instance of the Class . . . . . . . . . . . . . . . . . . . 3-3
Code Fragment: Instantiating a Java Class . . . . . . . . . . . . 3-3

Passing Arguments to and from Java . . . . . . . . . . . . . . . . 3-6
Manual Conversion of Data Types . . . . . . . . . . . . . . . . . . . . 3-6
Automatic Conversion to a MATLAB Type . . . . . . . . . . . . . 3-7
Specifying Optional Arguments . . . . . . . . . . . . . . . . . . . . . . 3-9
Handling Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Handling Checked Exceptions . . . . . . . . . . . . . . . . . . . . . . . 3-19
Handling Unchecked Exceptions . . . . . . . . . . . . . . . . . . . . . 3-22

Managing Native Resources . . . . . . . . . . . . . . . . . . . . . . . . 3-25
Using Garbage Collection Provided by the JVM . . . . . . . . . 3-25
Using the dispose Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
Overriding the Object.Finalize Method . . . . . . . . . . . . . . . . 3-27

iv Contents



Handling Data Conversion Between Java and
MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
Calling MWArray Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28

Using MWArray Classes

4
Guidelines for Working with MWArray Classes . . . . . . . 4-2

Overview of the MWArray API . . . . . . . . . . . . . . . . . . . . . . . 4-2
Understanding the MWArray Base Class . . . . . . . . . . . . . . 4-2
Constructing Numeric Arrays . . . . . . . . . . . . . . . . . . . . . . . 4-7
Working with Logical Arrays . . . . . . . . . . . . . . . . . . . . . . . . 4-22
Working with Character Arrays . . . . . . . . . . . . . . . . . . . . . . 4-26
Working with Cell Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31

Using Class Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Using MWArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Using MWNumericArray . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-58
Using MWLogicalArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-92
Using MWCharArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-107
Using MWStructArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-118
Using MWCellArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-135
Using MWClassID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-149
Using MWComplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-152

Sample Applications (Java)

5
Plot Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Spectral Analysis Example . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

Matrix Math Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Understanding the getfactor Program . . . . . . . . . . . . . . . . . 5-26

v



Reference Information for Java

6
Requirements for MATLAB Builder for Java . . . . . . . . . 6-2

System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Limitations and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Settings for Environment Variables (Development

Machine) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

MATLAB Builder for Java Graphical User Interface . . 6-7

Data Conversion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
Java to MATLAB Conversion . . . . . . . . . . . . . . . . . . . . . . . . 6-10
MATLAB to Java Conversion . . . . . . . . . . . . . . . . . . . . . . . . 6-12
Unsupported MATLAB Array Types . . . . . . . . . . . . . . . . . . 6-13

Programming Interfaces Generated by Java Builder . . 6-14
APIs Based on MATLAB Function Signatures . . . . . . . . . . 6-14
Standard API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15
mlx API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
Code Fragment: Signatures Generated for myprimes

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17

MWArray Class Specification . . . . . . . . . . . . . . . . . . . . . . . 6-19

Functions — Alphabetical List

7

Examples

A
Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Handling Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

vi Contents



Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Handling Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3

Sample Applications (Java) . . . . . . . . . . . . . . . . . . . . . . . . . A-3

Index

vii



viii Contents



1

Getting Started

What Is MATLAB Builder for Java?
(p. 1-2)

Brief description of what the product
does and how it works

Creating a Java Component (p. 1-5) Step-by-step procedure to create and
package a Java™ component that
encapsulates MATLAB® code

Developing an Application (p. 1-12) Step-by-step procedure to access the
component in an application

Deploying an Application (p. 1-14) What you have to do to support end
users who run applications using
your components

Example: Magic Square (p. 1-15) Step-by-step example, including code
for a simple MATLAB function and a
simple Java application

Understanding the Magic Square
Example (p. 1-23)

Details about the code in the Magic
Square application

For More Information (p. 1-25) Where to find out about concepts,
techniques, examples, and reference
information



1 Getting Started

What Is MATLAB Builder for Java?
MATLAB Builder for Java (also called Java Builder) is an extension to
MATLAB Compiler. Use Java Builder to wrap MATLAB functions into one
or more Java classes that make up a Java component, or package. Each
MATLAB function is encapsulated as a method of a Java class and can be
invoked from within a Java application.

When you package and distribute the application to your users, you must
include supporting files generated by Java Builder as well as the MATLAB
Component Runtime (MCR), which is provided by the product. Your users do
not have to purchase and install MATLAB.

Note MATLAB Builder for Java is also referred to in this documentation as
Java Builder, for ease of use.

Support for MATLAB Features in Java
Java Builder provides robust data conversion, indexing, and array formatting
capabilities to preserve the flexibility of MATLAB when called from Java
code. To support the MATLAB data types, Java Builder provides the MWArray
class hierarchy. You can use MWArray and other Java class members in your
application to convert native arrays to MATLAB arrays and vice versa. Java
Builder also provides automatic data conversion for passing arguments that
are Java types.

Known Issue in Data Returned by toArray
Referencing Sparse Format
There is a known issue where the data returned by calling toArray on a
MWNumericArray or MWLogicalArray object that references a MATLAB array
stored in sparse format may be incorrect or corrupted. If this use case applies
to your work, see “Version 1.0 (R2006b) MATLAB Builder for Java” in the
Release Notes for a link to information and a patch to fix this problem.

1-2



What Is MATLAB Builder for Java?

Using the Deployment Tool
The Deployment Tool provides a graphical user interface to Java Builder.
While you are still in MATLAB, issue the following command to open the
Deployment Tool:

deploytool

1-3



1 Getting Started

Use the Deployment Tool to perform the following tasks:

1-4



Creating a Java Component

Creating a Java Component
To create a component you need to write M-code (or use existing code) and
then create a project in MATLAB Builder for Java that encapsulates the code.
In general, the steps are as follows:

1 Write, test, and save the MATLAB code to be used as the basis for the
Java component.

2 Set the environment variables that are required on a development machine.
See “Settings for Environment Variables (Development Machine)” on page
6-2.

3 While you are still in MATLAB, issue the following command to open the
Deployment Tool:

deploytool

4 Use the Deployment Tool to create a project that contains one or more
classes.

a. Create the project by clicking the New Project icon in the toolbar.

b. Specify the project name and location.

By default the project name is assigned to be the name of the package
to be created. You can change the default.

c. Add class names for classes that you want to create as part of the
Java package.

d. Add one or more M-files that you want to encapsulate in each class.

e. Add helper files as needed to support the classes.

f. Save the project.

5 Build the package.

The build process for a project copies a Java wrapper class in the \src
subdirectory of your project directory. It also copies a .jar file and .ctf
file in the \distrib subdirectory of your project directory. The files in the
\distrib directory define your Java component.

1-5



1 Getting Started

The .ctf is a component technology file, which is required to support
components that encapsulate MATLAB functions when running them on a
user machine that does not have the MATLAB desktop installed.

6 Test the component and rebuild it as needed.

You probably want to test your component before using it in an application
or before preparing it for use by others. After testing the component on
your development platform, you can reopen the project if necessary and
proceed to the next step.

7 Optionally, create a package to distribute the component and the required
files to developers. This step is necessary only if you want to make
the component available to other application developers on a different
development machine.

Note On Windows platforms, the Deployment Tool creates a self-extracting
executable. On non-Windows platforms, the package is a .zip file rather
than a self-extracting executable.

8 Save the project.

Java Builder saves the project in a .prj file.

Using the Command-Line Interface
You can use the MATLAB command-line interface (or the operating system
command line) instead of the GUI to create Java objects. Do this by issuing
the mcc command with options. If you use mcc, you do not create a project.

Note See the MATLAB Compiler documentation for a complete description
of the mcc command and its options.

The following table provides an overview of some mcc options related to
creating Java components, along with syntax and examples of their usage.

1-6



Creating a Java Component

Using the Command Line to Create Java Components

Action to Perform mcc Option to Use Description

-W java: Tells Java Builder to generate a Java component
that contains a class that encapsulates the
specified files.

Syntax
mcc -W 'java:component_name[,class_name]' file1 [file2...fileN]

component_name is a fully qualified package name for your component.
The name is a period-separated list.

class_name is the name for the Java class to be created. The default
class_name is the last item in the list specified by component_name.

file1 [file2...fileN] are M-files to be encapsulated as methods in
class_name.

Create a class
encapsulating one or
more M-files.

Example

mcc -W 'java:com.mycompany.mycomponent,myclass'
foo.m bar.m

The example creates a Java component that has a fully qualified package
name, com.mycompany.mycomponent. The component contains a single
Java class, myclass, which contains methods foo and bar.

To use myclass, place the following statement in your code:

import com.mycompany.mycomponent.myclass;

1-7



1 Getting Started

Using the Command Line to Create Java Components (Continued)

Action to Perform mcc Option to Use Description

class{...} Used with -W java:. Tells Java Builder to create
class_name, which encapsulates one or more
M-files that are specified in a comma-separated
list.

Syntax
class{class_name:file1 [file2...fileN]}

Add additional
classes to a Java
component.

Example

mcc -W 'java:com.mycompany.mycomponent,myclass'
foo.m bar.m class{myclass2:foo2.m,bar2.m}

The example creates a Java component named mycomponent with two
classes:

myclass has methods foo and bar.

myclass2 has methods foo2 and bar2.

1-8



Creating a Java Component

Using the Command Line to Create Java Components (Continued)

Action to Perform mcc Option to Use Description

-B Tells Java Builder to replace a specified file with
the command-line information it contains.

Syntax
mcc -B 'bundlefile'[:arg1, arg2, ..., argN]

Simplify the
command-line input
for components.

Example
Suppose a myoptions file contains

-W 'java:mycomponent,myclass'

In this case,

mcc -B 'myoptions' foo.m bar.m

produces the same results as

mcc -W 'java:[mycomponent,myclass]' foo.m bar.m

See “Using Bundle Files” for more information.

1-9



1 Getting Started

Using the Command Line to Create Java Components (Continued)

Action to Perform mcc Option to Use Description

-S Tells Java Builder to create a single MCR when the
first Java class is instantiated. This MCR is reused
and shared among all subsequent class instances
within the component, resulting in more efficient
memory usage and eliminating the MCR startup
cost in each subsequent class instantiation.

By default, a new MCR instance is created for each
instance of each Java class in the component. Use
-S to change the default.

When using -S, note that all class instances
share a single MATLAB workspace and share
global variables in the M-files used to build the
component. This makes properties of a Java class
behave as static properties instead of instance-wise
properties.

Control how each
Java class uses the
MCR.

Example

mcc -S 'java:mycomponent,myclass' foo.m bar.m

The example creates a Java component called mycomponent containing
a single Java class named myclass with methods foo and bar. (See the
first example in this table).

If and when multiple instances of myclass are instantiated in an
application, only one MCR is initialized, and it is shared by all instances
of myclass.

Specify a directory
for output

-d directoryname Tells Java Builder to create a directory and copy
the output files to it. (If you use mcc instead
of the GUI, the project_directory\src and
project_directory\distrib directories are not
automatically created.)

1-10



Creating a Java Component

Note All of these command-line examples produce the following files:

mycomponent.jar (component jar file)
mycomponent.ctf (component ctf file)

Notice that the component name used to create these files is derived from the
last item on the period-separated list that specifies the fully qualified name
of the class.

1-11



1 Getting Started

Developing an Application
1 If the component is not already installed on the machine where you want to

develop your application, unpack and install the component as follows:

a. Copy the package that was created in the last step in “Creating a Java
Component” on page 1-5.

b. If the package is a self-extracting executable, paste the package in a
directory on the development machine, and run it. If the package is a
.zip file, unzip and extract the contents to the development machine.

Note You must repeat these steps for each development machine where
you want to use the components.

The first step is not necessary if you are developing your application on the
same machine where you created the Java component.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 6-2.

3 Import the MATLAB libraries and the component classes into your code
with the Java import function. For example:

import com.mathworks.toolbox.javabuilder.*;
import componentname.classname; or import componentname.*;

4 Use the new function in your Java code to create an instance of each class
you want to use in the application.

5 Call the class methods as you would do with any Java class.

6 Handle data conversion as needed.

When you invoke a method on a Java Builder component, the input
parameters received by the method must be in the MATLAB internal array
format. You can either (manually) convert them yourself within the calling
program, or pass the parameters as Java data types.

1-12



Developing an Application

• To manually convert to one of the standard MATLAB data types, use
MWArray classes in the package com.mathworks.toolbox,javabuilder.
See Chapter 4, “Using MWArray Classes” for an introduction to the
classes and see com.mathworks.toolbox.javabuilder.MWArray
(available online only) for reference information for this class library.

• If you pass them as Java data types, they are automatically converted.

7 Build and test the Java application as you would any application.

1-13



1 Getting Started

Deploying an Application
To deploy your application you must make sure that the installer you create
for the application takes care of supporting the components created by
MATLAB Builder for Java. In general, this means that the MCR must be
installed on the target machine, in addition to the application files.

Users must also set paths and environment variables correctly. See
“Deploying to End Users” in the MATLAB Compiler documentation.

1-14



Example: Magic Square

Example: Magic Square
This example shows you how to:

• Access the online examples provided with MATLAB Builder for Java.

• Use MATLAB Builder for Java to encapsulate a simple MATLAB function
in a Java component.

• Use the MWArray class library to handle data conversion in a sample
application.

About the Examples The examples for MATLAB Builder for Java are in
matlabroot\toolbox\javabuilder\Examples.

The Magic Square example shows you how to create magicsquare, a Java
component, which contains the magic class. The class encapsulates a
MATLAB function, makesqr, which computes a magic square. It represents
the magic square as a two-dimensional array.

The sample application, getmagic, does the following:

• Displays the array returned by the makesqr method

• Converts the array returned by makesqr to a native array and displays it

When you run the getmagic application from the command line, you can pass
the dimension for the magic square as a command-line argument.

Magic Square Example: Step-by-Step Procedure

1 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 6-2.

2 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

1-15



1 Getting Started

matlabroot\toolbox\javabuilder\Examples\MagicSquareExample

This procedure assumes that you are working on Windows and your
work directory is D:\Work.

b. At the MATLAB command prompt, change directory to the new
MagicSquareExample subdirectory in your work directory.

3 Write the makesqr function as you would any MATLAB function.

Here is the code for the makesqr function:

function y = makesqr(x)
y = magic(x);

This code is already in your directory in
MagicSquareExample\MagicDemoComp\makesqr.m.

4 While in MATLAB, issue the following command to open the Deployment
Tool:

deploytool

5 Create a new project

a. Click the New Deployment Project button in the Deployment Tool
toolbar.

Alternatively you can select File > New Deployment Project from
the MATLAB menu bar.

b. In the navigation pane, select MATLAB Builder for Java as the
product you want to use to create the deployment project.

c. From the component list, select Java as the kind of component you
want to create.

d. Click Browse to drill and select the location for your project.

e. Type the project name as magicsquare and click OK.

Note By default, the project name is also the component name.

1-16



Example: Magic Square

When you create a new project, the Deployment Tool dialog box shows the
folders that are part of the project. By default the top folder represents a
Java class belonging to the component. By default the class name is the
same as the project name.

Note When a new project first opens, the folders in the project are empty.

6 Enter the settings for the project.

a. Right-click the top folder, which represents the Java class you are
going to create, and select Rename Class.

b. In the Rename Class dialog box, enter magic and click OK.

c. Add the makesqr.m file to the project by dragging the file from the
Current Directory pane in the MATLAB desktop to the magic folder
in the Deployment Tool dialog box.

d. Select Generate Verbose Output.

e. Save the project by clicking (Save) in the Deployment Tool toolbar.

7 Build the project by clicking (Build) in the Deployment Tool toolbar.

The build process begins, and a log of the build is created. The files that are
needed for the component are generated in two newly created directories,
src and distrib, in the project directory. A copy of the build log is placed
in the src directory.

Note To create and build the magicsquare component without using the
Deployment Tool to create a project, issue the following command at the
MATLAB prompt:

mcc -W 'java:magicsquare,magic' makesqr.m

If you build your component using the mcc command, Java Builder does
not create the src and distrib subdirectories.

See “What Happens in the Build Process?” on page 2-9 for more information.

1-17



1 Getting Started

8 Access the component in a Java application. The sample application for this
example is in MagicSquareExample\MagicDemoJavaApp\getmagic.java.

getmagic.java

/* getmagic.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2006 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import magicsquare.*;

/*

* getmagic class computes a magic square of order N. The

* positive integer N is passed on the command line.

*/

class getmagic

{

public static void main(String[] args)

{

MWNumericArray n = null; /* Stores input value */

Object[] result = null; /* Stores the result */

magic theMagic = null; /* Stores magic class instance */

try

{

/* If no input, exit */

if (args.length == 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/* Convert and print input value*/

n = new MWNumericArray(Double.valueOf(args[0]),MWClassID.DOUBLE);

1-18



Example: Magic Square

System.out.println("Magic square of order " + n.toString());

/* Create new magic object */

theMagic = new magic();

/* Compute magic square and print result */

result = theMagic.makesqr(1, n);

System.out.println(result[0]);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(n);

MWArray.disposeArray(result);

if (theMagic != null)

theMagic.dispose();

}

}

}

In this sample application, the following code imports the libraries and
classes that are needed:

import com.mathworks.toolbox.javabuilder.*;
import magicsquare.*;

The following line instantiates the magic class:

theMagic = new magic();

The following line calls the makesqr method:

result = theMagic.makesqr(1, n);

In this method call, the first input argument specifies the number of
outputs the method is to return. This input is equivalent in value to the

1-19



1 Getting Started

MATLAB function, nargout, in the method being called. The second input
argument is the input specified in the function declaration statement of
the makesqr M-file.

Note The previous calling syntax is not the only way that you can call the
makesqr method. When Java Builder encapsulates makesqr.m, it overloads
the function, creating several signatures by which you can call the makesqr
method. This lets you specify optional arguments when calling from Java.
See “Understanding Function Signatures Generated by Java Builder” on
page 2-6 for more details.

Note that the program uses a try-catch block to catch and handle any
exceptions.

9 Compile the application.

Compile the getmagic application using the javac -classpath command
at the DOS or UNIX command prompt.

The compile yields a getmagic.class file.

Note For matlabroot substitute the MATLAB root directory on your
system. Type matlabroot to see this directory name.

a. On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\magicsquare.jar getmagic.java

Note If you created the component using mcc, Java Builder does not
create a \distrib directory to contain the .java file.

1-20



Example: Magic Square

b. On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/magicsquare.jar getmagic.java

10 Run the application.

If you used the Deployment Tool to create it, you can use the following
commands to run the getmagic.class file:

On Windows, type

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\magicsquare.jar
-Djava.library.path=matlabroot\bin\win32;.\distrib
getmagic 5

On UNIX, type

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/magicsquare.jar
-Djava.library.path=matlabroot/bin/arch:./distrib
getmagic 5

Note If you set your system path to include a directory pointed by
java.library.path, you do not need to use the -D option.

See “Settings for Environment Variables (Development Machine)” on page
6-2 and for more information about setting paths correctly.

Note The supported JRE version is 1.5.0. To find out what JRE you are
using, refer to the output of 'version -java' in MATLAB or refer to the
jre.cfg file in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

1-21



1 Getting Started

When you run the program you pass an argument representing the dimension
for the magic square. In this example, the value for the dimension is 5.

The program converts the number passed on the command line to a scalar
double value, creates an instance of class magic, and calls the makesqr
method on that object. The method computes the square using the MATLAB
magic function.

The getmagic program should display the following output:

Magic square of order 5

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

1-22



Understanding the Magic Square Example

Understanding the Magic Square Example
The Magic Square example shows the following aspects of writing an
application using components created by MATLAB Builder for Java:

• “Importing Classes” on page 1-23

• “Creating an Instance of the Class” on page 1-23

• “Calling Class Methods from Java” on page 1-23

Importing Classes
You must import the MATLAB libraries and your own Java classes into your
code. Use the Java import function to do this.

For the magicsquare example, the following statements perform the
necessary actions:

import com.mathworks.toolbox.javabuilder.*;
import magicsquare.*;

Creating an Instance of the Class
As with all Java classes, you must use the new function to create an instance
of a class. To create an object (theMagic) from the magic class, the example
application uses the following code:

theMagic = new magic();

Calling Class Methods from Java
Once you have instantiated the class, you can call a class method as you do
with any Java object. In the Magic Square example, the makesqr method is
called as shown:

result = theMagic.makesqr(1, n);

1-23



1 Getting Started

where n is an instance of an MWArray class. See the following code fragment
for the declaration of n:

n = new MWNumericArray(Double.valueOf(args[0],
MWClassID.DOUBLE);

1-24



For More Information

For More Information

Understanding concepts needed to
use MATLAB Builder for Java

Chapter 2, “Concepts”

Writing Java applications that
can access Java methods that
encapsulate M-code

Chapter 3, “Programming”

Using the MWArray API to handle
data conversion

Chapter 4, “Using MWArray
Classes”

Sample applications that access
methods developed in MATLAB

Chapter 5, “Sample Applications
(Java)”

Reference information about
automatic data conversion rules

“Data Conversion Rules” on page
6-10

1-25



1 Getting Started

1-26



2

Concepts

A component created by MATLAB Builder for Java is a stand-alone Java
package (.jar file). The package contains one or more Java classes that
encapsulate M-code. The classes provide methods that are callable directly
from Java code.

To use MATLAB Builder for Java you create a project, which specifies the
M-code to be used in the components that you want to create. Java Builder
supports data conversion between Java types and MATLAB types.

Note When you use Java Builder to create classes, you must create those
classes on the same operating system to which you are deploying them for
development (or for use by end users running an application). For example,
if your goal is to deploy an application to end users to run on Windows, you
must create the Java classes with Java Builder running on Windows.

The reason for this limitation is that although the .jar file itself might be
platform-independent, the .jar file is dependent on the .ctf file, which is not
platform-independent.

For more information about these concepts and about how the product works,
see the following topics:

What Is a Project? (p. 2-3) How MATLAB Builder for Java uses
the specifications in a project

How Does MATLAB Builder for Java
Handle Data? (p. 2-4)

How MATLAB Builder for Java
supports data conversion between
Java types and MATLAB types



2 Concepts

What Happens in the Build Process?
(p. 2-9)

Details about the process of building
a Java component

What Happens in the Package
Process? (p. 2-10)

Details about the packaging process

How Does Component Deployment
Work? (p. 2-11)

Details about deploying to an end
user

2-2



What Is a Project?

What Is a Project?
A Java Builder project contains information about the files and settings
needed by MATLAB Builder for Java to create a deployable Java component.
A project specifies information about classes and methods, including the
MATLAB functions to be included.

• “Classes and Methods” on page 2-3

• “Naming Conventions” on page 2-3

Classes and Methods
Java Builder transforms MATLAB functions that are specified in the
component’s project to methods belonging to a Java class.

When creating a component, you must provide one or more class names as
well as a component name. The class name denotes the name of the class
that encapsulates MATLAB functions.

To access the features and operations provided by the MATLAB functions,
instantiate the Java class generated by Java Builder, and then call the
methods that encapsulate the MATLAB functions.

Note When you add files to a project, you do not have to add any M-files for
functions that are called by the functions that you add. When Java Builder
builds a component, it automatically includes any M functions called by the
functions that you explicitly specify for the component. See “Spectral Analysis
Example” on page 5-8 for a sample application that illustrates this feature.

Naming Conventions
Typically you should specify names for components and classes that will be
clear to programmers who use your components. For example, if you are
encapsulating many MATLAB functions, it helps to determine a scheme of
function categories and to create a separate class for each category. Also, the
name of each class should be descriptive of what the class does.

2-3



2 Concepts

How Does MATLAB Builder for Java Handle Data?
To enable Java applications to exchange data with MATLAB methods
they invoke, Java Builder provides an API, which is implemented as the
com.mathworks.toolbox.javabuilder.MWArray package. This package
provides a set of data conversion classes derived from the abstract class,
MWArray. Each class represents a MATLAB data type.

• “Understanding the API Data Conversion Classes” on page 2-4

• “Automatic Conversion to MATLAB Types” on page 2-5

• “Understanding Function Signatures Generated by Java Builder” on page
2-6

• “Returning Data from MATLAB to Java” on page 2-7

Understanding the API Data Conversion Classes
When writing your Java application, you can represent your data using
objects of any of the data conversion classes. Alternatively, you can use
standard Java data types and objects.

The data conversion classes are built as a class hierarchy that represents the
major MATLAB array types.

Note This discussion provides conceptual information about the classes.

For usage information, see Chapter 4, “Using MWArray Classes”.

For reference information, see com.mathworks.toolbox.javabuilder.

This discussion assumes you have a working knowledge of the Java
programming language and the Java Software Development Kit (SDK). This
is not intended to be a discussion on how to program in Java. Refer to the
documentation that came with your Java SDK for general programming
information.

2-4



How Does MATLAB Builder for Java Handle Data?

Overview of Classes and Methods in the Data Conversion
Class Hierarchy
The root of the data conversion class hierarchy is the MWArray abstract
class. The MWArray class has the following subclasses representing the
major MATLAB types: MWNumericArray, MWLogicalArray, MWCharArray,
MWCellArray, and MWStructArray.

Each subclass stores a reference to a native MATLAB array of that type.
Each class provides constructors and a basic set of methods for accessing
the underlying array’s properties and data. To be specific, MWArray and the
classes derived from MWArray provide the following:

• Constructors and finalizers to instantiate and dispose of MATLAB arrays

• get and set methods to read and write the array data

• Methods to identify properties of the array

• Comparison methods to test the equality or order of the array

• Conversion methods to convert to other data types

Advantage of Using Data Conversion Classes
The MWArray data conversion classes let you pass native type parameters
directly without using explicit data conversion. If you pass the same array
frequently, you might improve the performance of your program by storing
the array in an instance of one of the MWArray subclasses.

Automatic Conversion to MATLAB Types

Note Because the conversion process is automatic (in most cases), you do not
need to understand the conversion process to pass and return arguments with
MATLAB Builder for Java components.

When you pass an MWArray instance as an input argument, the encapsulated
MATLAB array is passed directly to the method being called.

In contrast, if your code uses a native Java primitive or array as an input
parameter, Java Builder converts it to an instance of the appropriate MWArray

2-5



2 Concepts

class before it is passed to the method. Java Builder can convert any
Java string, numeric type, or any multidimensional array of these types to
an appropriate MWArray type, using its data conversion rules. See “Data
Conversion Rules” on page 6-10 for a list of all the data types that are
supported along with their equivalent types in MATLAB.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

Note There are some data types commonly used in MATLAB that are
not available as native Java types. Examples are cell arrays and arrays of
complex numbers. Represent these array types as instances of MWCellArray
and MWNumericArray, respectively.

Understanding Function Signatures Generated by
Java Builder
The Java programming language does not support optional function
arguments in the way that MATLAB does with varargin and varargout. To
support this feature of MATLAB, Java Builder always generates a basic set
of overloaded Java methods when it encapsulates each MATLAB function.
Each of these overloaded Java methods has the same name as the original
M-function, but has a different number or type of arguments. Each overloaded
function corresponds to one of the possible signatures in MATLAB.

In general, a function with N input arguments in MATLAB generates N+3
overloaded methods in Java. There is an overloaded method for each input
argument (N). The additional three methods handle (1) the case of no input
arguments and (2) the mlx function signature.

Note In addition to handling optional function arguments, the overloaded
Java methods that wrap MATLAB functions handle data conversion. See
“Automatic Conversion to MATLAB Types” on page 2-5 for more details.

2-6



How Does MATLAB Builder for Java Handle Data?

Understanding MATLAB Function Signatures
As background, recall that the generic MATLAB function has the following
structure:

function [Out1, Out2, ..., varargout]=foo(In1, In2, ..., varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

Each argument represents a MATLAB type. When you include the varargin
or varargout argument, you can specify an arbitrary number of inputs or
outputs beyond the ones that are explicitly declared.

Overloaded Methods in Java That Encapsulate M-Code
When MATLAB Builder for Java encapsulates your M-code, it creates a set of
overloaded methods that implement the MATLAB functions. Each of these
overloaded methods corresponds to a call to the generic MATLAB function for
each combination of the possible number and type of input arguments.

In addition to these methods encapsulating input arguments, Java Builder
creates another method, which represents the output arguments, or return
values, of the MATLAB function. This additional overloaded method takes
care of return values for the encapsulated MATLAB function. This method
of encapsulating the information about return values simulates the mlx
interface in the MATLAB Compiler.

These overloaded methods are called the standard interface (encapsulating
input arguments) and the mlx interface (encapsulating return values). See
“Programming Interfaces Generated by Java Builder” on page 6-14 for details.

Returning Data from MATLAB to Java
All data returned from a method coded in MATLAB is passed as an instance
of the appropriate MWArray subclass. For example, a MATLAB cell array is
returned to the Java application as an MWCellArray object.

2-7



2 Concepts

Return data is not converted to a Java type. If you choose to use a Java type,
you must convert to that type using the toArray method of the MWArray
subclass to which the return data belongs.

2-8



What Happens in the Build Process?

What Happens in the Build Process?

Note MATLAB Builder for Java uses the JAVA_HOME variable to locate the
Java Software Development Kit (SDK) on your system. The compiler uses
this variable to set the version of the javac.exe command it uses during
compilation.

To create a component, Java Builder does the following:

1 Generates Java code to implement your component. The files are as follows:

myclass.java Contains a Java class with methods
encapsulating the M-functions specified in
the project for that class.

mycomponentMCR.java Contains the CTF decryption keys and code
to initialize the MCR for the component.

2 Compiles the Java code produced in step 1.

3 Generates /distrib and /src subdirectories.

4 Creates a component technology file (.ctf) which contains encrypted
MATLAB files generated by Java Builder.

5 Invokes the Jar utility to package the Java class files it has created into a
Java archive file (mycomponent.jar).

2-9



2 Concepts

What Happens in the Package Process?
The packaging process creates a self-extracting executable (on Windows
platforms) or a .zip file (on non-Windows platforms). The package contains
at least the following:

• The Java Builder component

• The .ctf file for the component

• The MCR Installer (if the Install MCR option was selected when the
component was built)

Note The packaging process is not available when using mcc directly.

Note When you use Java Builder to create classes, you must create those
classes on the same operating system to which you are deploying them
for development (or for use by end users running an application). That is,
for example, if your goal is to deploy an application to end users to run on
Windows, you must create the Java classes with Java Builder running on
Windows.

The reason for this limitation is as follows: although the .jar file itself might
be platform-independent, the .jar file is dependent on the .ctf file, which
is not platform-independent.

2-10



How Does Component Deployment Work?

How Does Component Deployment Work?
There are two kinds of deployment:

• Installing components and setting up support for them on a development
machine so that they can be accessed by a developer who seeks to use them
in writing a Java application.

To accomplish this kind of deployment, create a package, using the GUI, as
described in “Creating a Java Component” on page 1-5.

• Deploying support for the components when they are accessed at run time
on an end-user machine.

To accomplish this kind of deployment, you must make sure that the
installer you create for the application takes care of supporting the Java
components on the target machine. In general, this means the MCR must
be installed, on the target machine. You must also install the Java Builder
component and its .ctf file.

For more information about the deployment process, see “Deploying to End
Users” in the MATLAB Compiler documentation.

2-11



2 Concepts

2-12



3

Programming

To access a Java component built and packaged by MATLAB Builder for
Java, you must first unpack and install components so you can use them on
a particular machine.

Then you perform the following programming tasks:

Import Classes (p. 3-2) How to reference the classes

Creating an Instance of the Class
(p. 3-3)

Sample code for instantiating a class
that encapsulates MATLAB code

Passing Arguments to and from Java
(p. 3-6)

How to match up data types between
MATLAB and Java

Handling Errors (p. 3-19) How to handle an error generated by
MATLAB

Managing Native Resources (p. 3-25) How to free memory used by the
MWArray data conversion classes

Handling Data Conversion Between
Java and MATLAB (p. 3-28)

Call signatures for passing
arguments and returning output

Note For conceptual information that might help you in approaching these
tasks, see Chapter 2, “Concepts”.

For examples of these tasks, see Chapter 5, “Sample Applications (Java)”.

For information about deploying your application after you complete these
tasks, see “How Does Component Deployment Work?” on page 2-11.



3 Programming

Import Classes
To use a component generated by MATLAB Builder for Java, you must do
the following:

• Import MATLAB libraries with the Java import function, for example:

import com.mathworks.toolbox.javabuilder.*;

• Import the component classes created by Java Builder, for example:

import componentname.*; or import componentname.classname;

Note When you use Java Builder to create classes, you must create those
classes on the same operating system to which you are deploying them
for development (or for use by end users running an application). That is,
for example, if your goal is to deploy an application to end users to run on
Windows, you must create the Java classes with Java Builder running on
Windows.

The reason for this limitation is as follows: although the .jar file itself might
be platform-independent, the .jar file is dependent on the .ctf file, which
is not platform-independent.

3-2



Creating an Instance of the Class

Creating an Instance of the Class
As with any Java class, you need to instantiate the classes you create with
MATLAB Builder for Java before you can use them in your program.

Suppose you build a component named MyComponent with a class named
MyClass. Here is an example of creating an instance of the MyClass class:

MyClass ClassInstance = new MyClass();

Code Fragment: Instantiating a Java Class
The following Java code shows how to create an instance of a class that was
built with MATLAB Builder for Java. The application uses a Java class that
encapsulates a MATLAB function, myprimes.

/*
* usemyclass.java uses myclass
*/

/* Import all com.mathworks.toolbox.javabuilder classes */
import com.mathworks.toolbox.javabuilder.*;

/* Import all com.mycompany.mycomponent classes */
import com.mycompany.mycomponent.*;

/*
* usemyclass class
*/

public class usemyclass
{

/** Constructs a new usemyclass */
public usemyclass()
{

super();
}

/* Returns an array containing the primes between 0 and n */
public double[] getprimes(int n) throws MWException
{

myclass cls = null;

3-3



3 Programming

Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

}

The import statements at the beginning of the program import packages that
define all the classes that the program requires. These classes are defined in
javabuilder.* and mycomponent.*; the latter defines the class myclass.

The following statement instantiates the class myclass:

cls = new myclass();

The following statement calls the class method myprimes:

y = cls.myprimes(1, new Double((double)n));

The sample code passes a java.lang.Double to the myprimes method. The
java.lang.Double is automatically converted to the double data type
required by the encapsulated MATLAB myprimes function.

When myprimes executes, it finds all prime numbers between 0 and the input
value and returns this in a MATLAB double array. This array is returned
to the Java program as an MWNumericArray with its MWClassID property set
to MWClassID.DOUBLE.

The myprimes method encapsulates the myprimes function.

3-4



Creating an Instance of the Class

myprimes Function
The code for myprimes is as follows:

function p = myprimes(n)
% MYPRIMES Returns the primes between 0 and n.
% P = MYPRIMES(N) Returns the primes between 0 and n.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2006 The MathWorks, Inc.

if length(n) ~= 1
error('N must be a scalar');

end

if n < 2
p = zeros(1,0);
return

end

p = 1:2:n;
q = length(p);
p(1) = 2;

for k = 3:2:sqrt(n)
if p((k+1)/2)

p(((k*k+1)/2):k:q) = 0;
end

end

p = (p(p>0));

3-5



3 Programming

Passing Arguments to and from Java
When you invoke a method on a MATLAB Builder for Java component,
the input arguments received by the method must be in the MATLAB
internal array format. You can either convert them yourself within the
calling program, or pass the arguments as Java data types, which are then
automatically converted by the calling mechanism.

To convert them yourself, use instances of the MWArray classes; in this case
you are using manual conversion. Storing your data using the classes and
data types defined in the Java language means that you are relying on
automatic conversion. Most likely, you will use a combination of manual and
automatic conversion.

• “Manual Conversion of Data Types” on page 3-6

• “Automatic Conversion to a MATLAB Type” on page 3-7

• “Specifying Optional Arguments” on page 3-9

• “Handling Return Values” on page 3-14

Manual Conversion of Data Types
To manually convert to one of the standard MATLAB data types, use the
MWArray data conversion classes provided by Java Builder. For class reference
information, see the com.mathworks.toolbox.javabuilder package. For
extensive usage information, see Chapter 4, “Using MWArray Classes”.

Code Fragment: Using MWNumericArray
The getmagic example shows manual conversion. The following code
fragment from that program shows a java.lang.Double argument that is
converted to an MWNumericArray type that can be used by the M-function
without further conversion.

MWNumericArray dims = null;
dims = new MWNumericArray(Double.valueOf(args[0]),

MWClassID.DOUBLE);

result = theMagic.makesqr(1, dims);

3-6



Passing Arguments to and from Java

Code Fragment: Passing an MWArray. This example constructs an
MWNumericArray of type MWClassID.DOUBLE. The call to myprimes passes the
number of outputs, 1, and the MWNumericArray, x:

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

Java Builder converts the MWNumericArray object to a MATLAB scalar double
to pass to the M-function.

Automatic Conversion to a MATLAB Type
When passing an argument only a small number of times, it is usually just
as efficient to pass a primitive Java type or object. In this case, the calling
mechanism converts the data for you into an equivalent MATLAB type.

For instance, either of the following Java types would be automatically
converted to the MATLAB double type:

• A Java double primitive

• An object of class java.lang.Double

For reference information about data conversion (tables showing each Java
type along with its converted MATLAB type, and each MATLAB type with its
converted Java type), see “Data Conversion Rules” on page 6-10.

Code Fragment: Automatic Data Conversion
When calling the makesqr method used in the getmagic application, you could
construct an object of type MWNumericArray. Doing so would be an example
of manual conversion. Instead, you could rely on automatic conversion, as
shown in the following code fragment:

result = M.makesqr(1, arg[0]);

In this case, a Java double is passed as arg[0].

3-7



3 Programming

Here is another example:

result = theFourier.plotfft(3, data, new Double(interval));

In this Java statement, the third argument is of type java.lang.Double.
According to conversion rules, the java.lang.Double automatically converts
to a MATLAB 1-by-1 double array.

Code Fragment: Passing a Java Double Object
The example calls the myprimes method with two arguments. The first
specifies the number of arguments to return. The second is an object of class
java.lang.Double that passes the one data input to myprimes.

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));

This second argument is converted to a MATLAB 1-by-1 double array,
as required by the M-function. This is the default conversion rule for
java.lang.Double.

Code Fragment: Passing an MWArray
This example constructs an MWNumericArray of type MWClassID.DOUBLE. The
call to myprimes passes the number of outputs, 1, and the MWNumericArray, x.

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

Java Builder converts the MWNumericArray object to a MATLAB scalar double
to pass to the M-function.

Code Fragment: Calling MWArray Methods
The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

For example, the following code fragment calls the constructor for the
MWNumericArray class with a Java double as the input argument:

3-8



Passing Arguments to and from Java

double Adata = 24;

MWNumericArray A = new MWnumericArray(Adata);

System.out.println("Array A is of type " + A.classID());

Java Builder converts the input argument to an instance of MWNumericArray,
with a ClassID property of MWClassID.DOUBLE. This MWNumericArray object
is the equivalent of a MATLAB 1-by-1 double array.

When you run this example, the results are as follows:

Array A is of type double

Changing the Default by Specifying the Type
When calling an MWArray class method constructor, supplying a specific data
type causes Java Builder to convert to that type instead of the default.

For example, in the following code fragment, the code specifies that A should
be constructed as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

Array A is of type int16

Specifying Optional Arguments
So far, the examples have not used M-functions that have varargin or
varargout arguments. Consider the following M-function:

function y = mysum(varargin)
% MYSUM Returns the sum of the inputs.
% Y = MYSUM(VARARGIN) Returns the sum of the inputs.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2006 The MathWorks, Inc.

3-9



3 Programming

y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a
varargin argument, which means that the caller can specify any number of
inputs to the function. The result is returned as a scalar double.

Code Fragment: Passing Variable Numbers of Inputs
Java Builder generates a Java interface to this function as follows:

/* mlx interface - List version*/
public void mysum(List lhs, List rhs)

throws MWException
{

(implementation omitted)
}
/* mlx interface - Array version*/
public void mysum(Object[] lhs, Object[] rhs)

throws MWException
{

(implementation omitted)
}

/* standard interface - no inputs */
public Object[] mysum(int nargout) throws MWException
{

(implementation omitted)
}

/* standard interface - variable inputs */
public Object[] mysum(int nargout, Object varargin)

throws MWException
{

(implementation omitted)
}

In all cases, the varargin argument is passed as type Object. This lets
you provide any number of inputs in the form of an array of Object, that
is Object[], and the contents of this array are passed to the compiled

3-10



Passing Arguments to and from Java

M-function in the order in which they appear in the array. Here is an example
of how you might use the mysum method in a Java program:

public double getsum(double[] vals) throws MWException
{

myclass cls = null;
Object[] x = {vals};
Object[] y = null;

try
{

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

In this example, an Object array of length 1 is created and initialized with
a reference to the supplied double array. This argument is passed to the
mysum method. The result is known to be a scalar double, so the code returns
this double value with the statement:

return ((MWNumericArray)y[0]).getDouble(1);

Cast the return value to MWNumericArray and invoke the getDouble(int)
method to return the first element in the array as a primitive double value.

Code Fragment: Passing Array Inputs. The next example performs
a more general calculation:

public double getsum(Object[] vals) throws MWException
{

myclass cls = null;
Object[] x = null;

3-11



3 Programming

Object[] y = null;

try
{

x = new Object[vals.length];
for (int i = 0; i < vals.length; i++)

x[i] = new MWNumericArray(vals[i], MWClassID.DOUBLE);

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}
finally
{

MWArray.disposeArray(x);
MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

This version of getsum takes an array of Object as input and converts each
value to a double array. The list of double arrays is then passed to the mysum
function, where it calculates the total sum of each input array.

Code Fragment: Passing a Variable Number of Outputs
When present, varargout arguments are handled in the same way that
varargin arguments are handled. Consider the following M-function:

function varargout = randvectors
% RANDVECTORS Returns a list of random vectors.
% VARARGOUT = RANDVECTORS Returns a list of random
% vectors such that the length of the ith vector = i.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2006 The MathWorks, Inc.

for i=1:nargout

3-12



Passing Arguments to and from Java

varargout{i} = rand(1, i);
end

This function returns a list of random double vectors such that the length
of the ith vector is equal to i. The MATLAB Compiler generates a Java
interface to this function as follows:

/* mlx interface - List version */
public void randvectors(List lhs, List rhs) throws MWException

{
(implementation omitted)

}
/* mlx interface Array version */
public void randvectors(Object[] lhs, Object[] rhs) throws MWException
{

(implementation omitted)
}
/* Standard interface no inputs*/
public Object[] randvectors(int nargout) throws MWException
{

(implementation omitted)
}

Code Fragment: Passing Optional Arguments with the Standard
Interface. Here is one way to use the randvectors method in a Java
program:

public double[][] getrandvectors(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.randvectors(n);
double[][] ret = new double[y.length][];

for (int i = 0; i < y.length; i++)
ret[i] = (double[])((MWArray)y[i]).getData();

3-13



3 Programming

return ret;
}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The getrandvectors method returns a two-dimensional double array with
a triangular structure. The length of the ith row equals i. Such arrays are
commonly referred to as jagged arrays. Jagged arrays are easily supported in
Java because a Java matrix is just an array of arrays.

Handling Return Values
The previous examples used the fact that you knew the type and
dimensionality of the output argument. In the case that this information is
unknown, or can vary (as is possible in M-programming), the code that calls
the method might need to query the type and dimensionality of the output
arguments.

There are two basic ways to do this. You can do one of the following:

• Use reflection support in the Java language to query any object for its type.

• Use several methods provided by the MWArray class to query information
about the underlying MATLAB array.

Code Fragment: Using Java Reflection
This code sample calls the myprimes method, and then determines the type
using reflection. The example assumes that the output is returned as a
numeric matrix but the exact numeric type is unknown.

public void getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

3-14



Passing Arguments to and from Java

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
Object a = ((MWArray)y[0]).toArray();

if (a instanceof double[][])
{

double[][] x = (double[][])a;

/* (do something with x...) */
}

else if (a instanceof float[][])
{

float[][] x = (float[][])a;

/* (do something with x...) */
}

else if (a instanceof int[][])
{

int[][] x = (int[][])a;

/* (do something with x...) */
}

else if (a instanceof long[][])
{

long[][] x = (long[][])a;

/* (do something with x...) */
}

else if (a instanceof short[][])
{

short[][] x = (short[][])a;

/* (do something with x...) */

3-15



3 Programming

}

else if (a instanceof byte[][])
{

byte[][] x = (byte[][])a;

/* (do something with x...) */
}

else
{

throw new MWException(
"Bad type returned from myprimes");

}
}

This example uses the toArray method (see “Methods to Copy, Convert,
and Compare MWArrays” on page 4-49) to return a Java primitive array
representing the underlying MATLAB array. The toArray method works just
like getData in the previous examples, except that the returned array has the
same dimensionality as the underlying MATLAB array.

Code Fragment: Using MWArray Query
The next example uses the MWArray classID method (see “Methods to
Return Information About an MWArray” on page 4-40) to determine the
type of the underlying MATLAB array. It also checks the dimensionality by
calling numberOfDimensions. If any unexpected information is returned, an
exception is thrown. It then checks the MWClassID and processes the array
accordingly.

public void getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));

3-16



Passing Arguments to and from Java

MWClassID clsid = ((MWArray)y[0]).classID();

if (!clsid.isNumeric() ||
((MWArray)y[0]).numberOfDimensions() != 2)

{
throw new MWException("Bad type returned from myprimes");

}

if (clsid == MWClassID.DOUBLE)
{

double[][] x = (double[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.SINGLE)
{

float[][] x = (float[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT32 ||
clsid == MWClassID.UINT32)

{
int[][] x = (int[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT64 ||
clsid == MWClassID.UINT64)

{
long[][] x = (long[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT16 ||
clsid == MWClassID.UINT16)

3-17



3 Programming

{
short[][] x = (short[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT8 ||
clsid == MWClassID.UINT8)

{
byte[][] x = (byte[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

}
finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

3-18



Handling Errors

Handling Errors
Errors that occur during execution of an M-function or during data conversion
are signaled by a standard Java exception. This includes MATLAB run-time
errors as well as errors in your M-code.

In general, there are two types of exceptions in Java: checked exceptions
and unchecked exceptions.

Handling Checked Exceptions
Checked exceptions must be declared as thrown by a method using the Java
language throws clause. Java Builder components support one checked
exception: com.mathworks.toolbox.javabuilder.MWException. This
exception class inherits from java.lang.Exception and is thrown by every
MATLAB Compiler generated Java method to signal that an error has
occurred during the call. All normal MATLAB run-time errors, as well as
user-created errors (e.g., a calling error in your M-code) are manifested as
MWExceptions.

The Java interface to each M-function declares itself as throwing an
MWException using the throws clause. For example, the myprimes M-function
shown previously has the following interface:

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */
public void myprimes(Object[] lhs, Object[] rhs) throws MWException
{

(implementation omitted)
}

/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/

3-19



3 Programming

public Object[] myprimes(int nargout, Object n) throws MWException
{

(implementation omitted)
}

Any method that calls myprimes must do one of two things:

• Catch and handle the MWException.

• Allow the calling program to catch it.

The following two sections provide examples of each.

Code Fragment: Handling an Exception in the Called Function
The getprimes example shown here uses the first of these methods. This
method handles the exception itself, and does not need to include a throws
clause at the start.

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by myprimes */
catch (MWException e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);

3-20



Handling Errors

if (cls != null)
cls.dispose();

}
}

Note that in this case, it is the programmer’s responsibility to return
something reasonable from the method in case of an error.

The finally clause in the example contains code that executes after all
other processing in the try block is executed. This code executes whether or
not an exception occurs or a control flow statement like return or break
is executed. It is common practice to include any cleanup code that must
execute before leaving the function in a finally block. The documentation
examples use finally blocks in all the code samples to free native resources
that were allocated in the method.

For more information on freeing resources, see “Managing Native Resources”
on page 3-25.

Code Fragment: Handling an Exception in the Calling Function
In this next example, the method that calls myprimes declares that it throws
an MWException:

public double[] getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

3-21



3 Programming

cls.dispose();
}

}

Handling Unchecked Exceptions
Several types of unchecked exceptions can also occur during the course of
execution. Unchecked exceptions are Java exceptions that do not need to be
explicitly declared with a throws clause. The MWArray API classes all throw
unchecked exceptions.

All unchecked exceptions thrown by MWArray and its subclasses are subclasses
of java.lang.RuntimeException. The following exceptions can be thrown
by MWArray:

• java.lang.RuntimeException

• java.lang.ArrayStoreException

• java.lang.NullPointerException

• java.lang.IndexOutOfBoundsException

• java.lang.NegativeArraySizeException

This list represents the most likely exceptions. Others might be added in the
future. For information on the exceptions that can occur for each method of
MWArray and its subclasses, see Using MWArray Classes.

Code Fragment: Catching General Exceptions
You can easily rewrite the getprimes example to catch any exception that can
occur during the method call and data conversion. Just change the catch
clause to catch a general java.lang.Exception.

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();

3-22



Handling Errors

y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by anyone */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Code Fragment: Catching Multiple Exception Types
This second, and more general, variant of this example differentiates between
an exception generated in a compiled method call and all other exception
types by introducing two catch clauses as follows:

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by myprimes */
catch (MWException e)
{

3-23



3 Programming

System.out.println("Exception in MATLAB call: " +
e.toString());

return new double[0];
}

/* Catches all other exceptions */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The order of the catch clauses here is important. Because MWException is a
subclass of Exception, the catch clause for MWException must occur before
the catch clause for Exception. If the order is reversed, the MWException
catch clause will never execute.

3-24



Managing Native Resources

Managing Native Resources
When your code accesses Java classes created by MATLAB Builder for Java,
your program uses native resources, which exist outside the control of the
Java Virtual Machine (JVM).

Specifically, each MWArray data conversion class is a wrapper class that
encapsulates a MATLAB mxArray. The encapsulated MATLAB array
allocates resources from the native memory heap.

Note Because the Java wrapper is small and the mxArray is relatively large,
the JVM memory manager may not call the garbage collector before the
native memory becomes exhausted or badly fragmented. This means that
native arrays should be explicitly freed.

You can use any of the following techniques to free memory:

• “Using Garbage Collection Provided by the JVM” on page 3-25

• “Using the dispose Method” on page 3-26

• “Overriding the Object.Finalize Method” on page 3-27

Using Garbage Collection Provided by the JVM
When you create a new instance of a Java class, the JVM allocates and
initializes the new object. When this object goes out of scope, or becomes
otherwise unreachable, it becomes eligible for garbage collection by the JVM.
The memory allocated by the object is eventually freed when the garbage
collector is run.

When you instantiate MWArray classes, the encapsulated MATLAB also
allocates space for native resources, but these resources are not visible to the
JVM and are not eligible for garbage collection by the JVM. These resources
are not released by the class finalizer until the JVM determines that it is
appropriate to run the garbage collector.

The resources allocated by MWArray objects can be quite large and can quickly
exhaust your available memory. To avoid exhausting the native memory

3-25



3 Programming

heap, MWArray objects should be explicitly freed as soon as possible by the
application that creates them.

Using the dispose Method
The best technique for freeing resources for classes created by MATLAB
Builder for Java is to call the dispose method explicitly. Any Java object,
including an MWArray object, has a dispose method.

The MWArray classes also have a finalize method, called a finalizer, that
calls dispose. Although you can think of the MWArray finalizer as a kind of
safety net for the cases when you do not call dispose explicitly, keep in mind
that you cannot determine exactly when JVM calls the finalizer, and the JVM
might not discover memory that should be freed.

Code Fragment: Using dispose
The following example allocates an approximate 8 MB native array. To
the JVM, the size of the wrapped object is just a few bytes (the size of an
MWNumericArray instance) and thus not of significant size to trigger the
garbage collector. This example shows why it is good practice to free the
MWArray explicitly.

/* Allocate a huge array */
int[] dims = {1000, 1000};
MWNumericArray a = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);
.
. (use the array)
.

/* Dispose of native resources */
a.dispose();

/* Make it eligible for garbage collection */
a = null;

The statement a.dispose() frees the memory allocated by both the managed
wrapper and the native MATLAB array.

3-26



Managing Native Resources

The MWArray class provides two disposal methods: dispose and
disposeArray. The disposeArray method is more general in that it disposes
of either a single MWArray or an array of arrays of type MWArray.

Code Fragment: Use try-finally to Ensure Resources Are Freed
Typically, the best way to call the dispose method is from a finally clause
in a try-finally block. This technique ensures that all native resources
are freed before exiting the method, even if an exception is thrown at some
point before the cleanup code.

Code Fragment: Using dispose in a finally Clause.

This example shows the use of dispose in a finally clause:

/* Allocate a huge array */
try
{

int[] dims = {1000, 1000};
MWNumericArray a = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);
.
. (use the array)
.

}

/* Dispose of native resources */
finally
{

a.dispose();
/* Make it eligible for garbage collection */
a = null;

}

Overriding the Object.Finalize Method
You can also override the Object.Finalize method to help clean up native
resources just before garbage collection of the managed object. Refer to your
Java language reference documentation for detailed information on how to
override this method.

3-27



3 Programming

Handling Data Conversion Between Java and MATLAB
The call signature for a method that encapsulates a MATLAB function uses
one of the MATLAB data conversion classes to pass arguments and return
output. When you call any such method, all input arguments not derived
from one of the MWArray classes are converted by Java Builder to the correct
MWArray type before being passed to the MATLAB method.

For example, consider the following Java statement:

result = theFourier.plotfft(3, data, new Double(interval));

The third argument is of type java.lang.Double, which converts to a
MATLAB 1-by-1 double array.

Calling MWArray Methods
The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes. For example, the following code calls the constructor for the
MWNumericArray class with a Java double input. Java Builder converts
the Java double input to an instance of MWNumericArray having a ClassID
property of MWClassID.DOUBLE. This is the equivalent of a MATLAB 1-by-1
double array.

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

Array A is of type double

Specifying the Type
There is an exception: if you supply a specific data type in the same
constructor, Java Builder converts to that type rather than following the
default conversion rules. Here, the code specifies that A should be constructed
as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;

3-28



Handling Data Conversion Between Java and MATLAB

MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

Array A is of type int16

3-29



3 Programming

3-30



4

Using MWArray Classes

The following topics explain how to use the data conversion classes in the
com.mathworks.toolbox.javabuilder.MWArray package.

Guidelines for Working with
MWArray Classes (p. 4-2)

How to use the MWArray API to
handle various kinds of data

Using Class Methods (p. 4-38) How to use each class in the
MWArray API



4 Using MWArray Classes

Guidelines for Working with MWArray Classes

Overview of the MWArray API
The MWArray Java API is a class hierarchy that represents the major
MATLAB array types. The root class is MWArray, which has the following
subclasses:

• MWNumericArray

• MWLogicalArray

• MWCharArray

• MWCellArray

• MWStructArray

These subclasses provide constructors and factory methods for creating new
MATLAB arrays from standard Java types and objects. You can use these
MATLAB arrays as arguments in method calls.

Note To improve performance, MWArrays are designed so that they cannot be
resized or reshaped once they are created.

Understanding the MWArray Base Class
MWArray stores a reference to a native MATLAB array and provides a set of
methods for accessing the array’s properties and data. MWArray also provides
methods for converting the MATLAB array to standard Java types from the
outputs of a Java class method call.

Accessing Elements of the Arrays
You cannot access the underlying MATLAB array’s data buffers directly.
Instead use set and get methods to retrieve or modify an element of the
array. The set and get methods support simple indexing through a single
subscript (value at offset) or you can supply an array of int representing the
indices of the requested value. In the case of structure arrays, indexing by
field name is also supported.

4-2



Guidelines for Working with MWArray Classes

Method Overrides Implemented by MWArray
To ensure integration with Java programs, MWArray provides overrides for
java.lang.Object methods and implements the required Java interfaces as
needed. The following table provides more information about the overrides.

Overrides

Method in MWArray
Base Class

Override Description

equals Overrides Object.equals to provide a logical
equality test for two MWArrays. Internally, this
method does a byte-wise comparison of the
native buffer. Therefore, two MWArray instances
are logically equal when they are of the same
MATLAB type and have identical size, shape,
and content.

hashCode Overrides Object.hashCode to allow MWArray
to function properly with hash-based collections.

toString Overrides Object.toString so that MWArray
objects will print properly. This method
formats a new java.lang.String from the
underlying MATLAB array so that calls to
System.out.println with an MWArray as an
argument will produce the same output as
displaying the array in MATLAB.

finalize Overrides Object.finalize so that the
underlying MATLAB array is destroyed when
the garbage collector reclaims the containing
MWArray object. This method has protected
access and is not user callable.

Java Interfaces Implemented by MWArray
MWArray implements the standard Java interfaces shown in the following
table.

4-3



4 Using MWArray Classes

Java Interfaces Implemented by MWArray

Interface Method in MWArray
Base Class

Description of
Method

Cloneable clone
(public method)

Produces a new
MWArray object that
contains a deep copy
of the underlying
MATLAB array.

Comparable compareTo
(public method)

Allows comparisons of
MWArrays for order.
Internally, this
method does a
byte-wise comparison
of the native buffer.
Therefore, MWArray
has a natural ordering
that is based on a
combination of the
array’s MATLAB type,
size, and shape.

Serializable writeObject
readObject
(private methods)

Provides serialization
support is as required
by the Serializable
interface.

Additional MWArray Methods
MWArray

MWArray also implements several base class methods that are common to all
MWArray subclasses. These methods are shown in the following table.

Method Usage

MWArray() Constructs an empty array.

classID() Returns the MATLAB type of the array.

4-4



Guidelines for Working with MWArray Classes

Method Usage

columnIndex() Returns the column index (second
dimension) of each element in the array.
Call this method to get an array of
column indices for the nonzero elements
of a sparse array.

dispose() Frees the native resources associated
with the underlying MATLAB array.

disposeArray(Object) Calls dispose on all MWArray instances
contained in the input.

get(int) Returns the elements at the specified
one-based offset.

get(int[]) Returns the elements at the specified
one-based index array.

getData() Returns a one-dimensional array
containing a copy of the data in the
underlying MATLAB array as an array of
Java types. The elements in the returned
array are arranged in column-wise order.
The different kinds of arrays are returned
as follows:

• If the underlying MATLAB array is
complex, the real part is returned.

• If the underlying array is sparse, an
array containing the nonzero elements
is returned.

• If the underlying array is a cell or
struct array, toArray is recursively
called on each element.

getDimensions() Returns an array of dimensions for the
array.

isEmpty() Tests if the array is empty.

isSparse() Tests if the array is sparse.

4-5



4 Using MWArray Classes

Method Usage

maximumNonZeros() Returns the current allocated capacity of
nonzero elements for a sparse array.

numberOfDimensions() Returns the number of dimensions in the
array.

numberOfElements() Returns the number of elements in the
array.

numberOfNonZeros() Returns the current number of nonzero
elements for a sparse array.

rowIndex() Returns the row index (first dimension)
of each element in the array. Call this
method to get an array of row indices for
the nonzero elements of a sparse array.

set(int, Object) Replaces the element at the one-based
index with the supplied value.

set(int[], Object) Replaces the element at the one-based
index array with the supplied value.

4-6



Guidelines for Working with MWArray Classes

Method Usage

sharedCopy() Creates a new MWArray instance
that represents a shared copy of
the underlying MATLAB array.
A shared copy points to the same
underlying MATLAB array as the
original. Changing the data in a shared
copy also changes the original array.

toArray() Returns an array containing a copy of
the data in the underlying MATLAB
array as an array of Java types.
The returned array has the same
dimensionality as the underlying
MATLAB array. The different kinds of
arrays are returned as follows:

• If the underlying MATLAB array is
complex, the real part is returned.

• If the underlying array is sparse, a full
representation of the array is returned.

• If the underlying array is a cell or
struct array, toArray is recursively
called on each element.

Constructing Numeric Arrays
The MWNumericArray class provides a Java interface to a numeric MATLAB
array. An instance of this class can store a reference to a MATLAB array of
type double, single, int8, uint8, int16, int32, uint32, int64, and uint64.
MWNumericArrays can be real or complex, dense or sparse (sparse is supported
for double type only).

Overview of Constructors and Data Types
The following table lists MWNumericArray class constructors.

4-7



4 Using MWArray Classes

Constructor Usage

MWNumericArray() Empty double array

MWNumericArray (MWClassID) Empty array of type specified by
MWClassID

MWNumericArray(type,
MWClassID)

Real array of type specified by MWClassID

MWNumericArray(type) Real array with type determined from
default conversion rules

MWNumericArray(type, type,
MWClassID)

Complex array of type specified by
MWClassID

MWNumericArray(type, type) Complex array with type determined
from default conversion rules

4-8



Guidelines for Working with MWArray Classes

Supported Data Types. In the previous table, type represents supported
Java types. MWNumericArray supports the following Java primitive types:

• double

• float

• byte

• short

• int

• long

• boolean

The following object types are also supported:

• Subclasses of java.lang.Number

• Subclasses of java.lang.String

• Subclasses of java.lang.Boolean

In addition to supporting scalar values of the types listed, general
N-dimensional arrays of each type are also supported.

Constructing Different Types of Numeric Arrays

Here are some examples showing how to construct different types of numeric
arrays with the various forms of the MWNumericArray constructor.

Constructing Complex Arrays

The following four statements all construct a complex scalar int32 array
with a value of 1+2i:

MWNumericArray a1 = new MWNumericArray(1, 2);
MWNumericArray a2 = new MWNumericArray(1.0, 2.0,

MWClassID.INT32);
MWNumericArray a3 = new MWNumericArray(new Double(1.0),

4-9



4 Using MWArray Classes

New Integer(2), MWClassID.INT32);
MWNumericArray a4 = new MWNumericArray("1.0", "2.0",

MWClassID.INT32);

Constructing Matrices

The next group of statements constructs a 2-by-2 double matrix with the
following values:

[1 2
3 4]

double[][] x1 = {{1.0, 2.0}, {3.0, 4.0}};
int[][] x2 = {{1, 2}, {3, 4}};
Double[][] x3 = {{new Double(1.0), new Double(2.0)},

{new Double(3.0), new Double(4.0)}};
String[][] x4 = {{"1.0", "2.0'}, {"3.0", "4.0"}};

MWNumericArray a1 = new MWNumericArray(x1, MWClassID.DOUBLE);
MWNumericArray a2 = new MWNumericArray(x2, MWClassID.DOUBLE);
MWNumericArray a3 = new MWNumericArray(x3, MWClassID.DOUBLE);
MWNumericArray a4 = new MWNumericArray(x4, MWClassID.DOUBLE);

Constructing N-Dimensional Arrays

The MWNumericArray constructors also support multidimensional arrays of all
supported types. For example, you can construct a 2-by-3-by-2 double array
with the following two statements:

Double[][][] x1 = {
{{ 1.0, 2.0, 3.0},
{ 4.0, 5.0, 6.0}},

{{ 7.0, 8.0, 9.0},
{10.0, 11.0, 12.0}}

};

MWNumericArray a1 = new MWNumericArray(x1);

4-10



Guidelines for Working with MWArray Classes

Constructing Jagged Arrays

The previous examples constructed rectangular Java arrays and used these
arrays to initialize MATLAB arrays. Multidimensional arrays in Java are
implemented as arrays of arrays, which means that it is possible to construct
a Java array in which each row can have a different number of columns. Such
arrays are commonly referred to as jagged arrays.

MWNumericArray constructors support jagged arrays by constructing a
rectangular array and padding with zeros any missing elements. The
resulting MATLAB array will have a column count equal to the largest
column count in any row of the input array. For example, the following two
statements construct a 5-by-5 double matrix from a 5-by-5 Java double array
in which the number of columns in the ith row equals i:

double[][] pascalsTriangle = {
{1.0},

{1.0, 1.0},
{1.0, 2.0, 1.0},

{1.0, 3.0, 3.0, 1.0},
{1.0, 4.0, 6.0, 4.0, 1.0}

};

MWNumericArray a1 = new MWNumericArray(pascalsTriangle);

The resulting MATLAB array has the following structure:

[1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1]

Passing Arguments to Constructors as MWClassID. In some cases, the
constructor converts the input to the specified type passed as an MWClassID
value. When this value is omitted, the inputs are converted according to
default conversion rules.

For example, each of the following statements creates a real scalar double
array with a value of 1.0:

4-11



4 Using MWArray Classes

MWNumericArray a1 = new MWNumericArray(1.0);
MWNumericArray a2 = new MWNumericArray(1, MWClassID.DOUBLE);
MWNumericArray a3 = new MWNumericArray(new Double(1.0),

MWClassID.DOUBLE);
MWNumericArray a4 = new MWNumericArray("1.0", MWClassID.DOUBLE);

In general, it is most efficient to supply an argument that causes the desired
array to be created using the default conversion rules.

Some types require coercion to produce the correct MATLAB array. If you
supply an unsupported type to an MWNumericArray constructor, an exception
is thrown and the array is not created.

The following example constructs a real 1-by-3 double array with the values
[1 2 3]:

double[] x1 = {1.0, 2.0, 3.0};
int[] x2 = {1, 2, 3};
Double[] x3 = {new Double(1.0), new Double(2.0),

new Double(3.0)};
String[] x4 = {"1.0", "2.0", "3.0"};

MWNumericArray a1 = new MWNumericArray(x1, MWClassID.DOUBLE);
MWNumericArray a2 = new MWNumericArray(x2, MWClassID.DOUBLE);
MWNumericArray a3 = new MWNumericArray(x3, MWClassID.DOUBLE);
MWNumericArray a4 = new MWNumericArray(x4, MWClassID.DOUBLE);

Using Static Factory Methods to Construct MWNumericArrays
An alternative method for constructing numeric arrays is to use the static
factory methods of the MWNumericArray class. The following table lists such
methods.

Factory Method Usage

newInstance(int[], MWClassID,
MWComplexity)

Numeric array of specified type and
complexity. Values are initialized to
0.

4-12



Guidelines for Working with MWArray Classes

Factory Method Usage

newInstance(int[], Object,
MWClassID)

Real numeric array of specified type.
Values are initialized with supplied
arrays.

newInstance(int[], Object,
Object, MWClassID)

Complex numeric array of specified
type. Values are initialized with
supplied arrays.

newSparse(int[], int[],
Object, int, int, int,
MWClassID)

Real sparse numeric matrix of
specified type, dimensions, and
maximum nonzeros. Values are
initialized with supplied row,
column, and data arrays.

newSparse(int[], int[],
Object, int, int, MWClassID)

Real sparse numeric matrix of
specified type and dimensions.
Values are initialized with supplied
row, column, and data arrays.
Maximum nonzeros are computed
from input data.

newSparse(int[], int[],
Object, MWClassID)

Real sparse numeric matrix of
specified type. Values are initialized
with supplied row, column, and data
arrays. Maximum nonzeros and
dimensions are computed from input
data.

newSparse(int[], int[],
Object, Object, int, int,
int, MWClassID)

Complex sparse numeric matrix
of specified type, dimensions,
and maximum nonzeros. Values
are initialized with supplied row,
column, and data arrays.

newSparse(int[], int[],
Object, Object, int, int,
MWClassID)

Complex sparse numeric matrix
of specified type and dimensions.
Values are initialized with supplied
row, column, and data arrays.
Maximum nonzeros are computed
from input data.

4-13



4 Using MWArray Classes

Factory Method Usage

newSparse(int[], int[],
Object, Object, MWClassID)

Complex sparse numeric matrix of
specified type. Values are initialized
with supplied row, column, and data
arrays. Maximum nonzeros and
dimensions are computed from input
data.

newSparse(int, int, int,
MWClassID, MWComplexity)

Sparse numeric matrix with specified
type, complexity, dimensions, and
maximum nonzeros. Values are
initialized to 0.

newSparse(Object, MWClassID) Real sparse numeric matrix of
specified type. Values are initialized
from the supplied full matrix.

newSparse(Object, Object,
MWClassID)

Complex sparse numeric matrix of
specified type. Values are initialized
from the supplied full matrix.

Data Arrangement in the Array. Each of the static factory methods for
MWNumericArray returns a new MWNumericArray instance constructed from
the input information. The methods can be used to construct and initialize
an array with supplied data, or to construct an array of a specified size and
initialize all values to zero. The main difference is that (with exception of
the last two newSparse methods) data is supplied to the factory methods in
one-dimensional arrays with the data arranged in column-wise order.

The following example rewrites the previous one-dimensional array
constructor example:

double[] x1 = {1.0, 2.0, 3.0};
int[] x2 = {1, 2, 3};
Double[] x3 = {new Double(1.0),

new Double(2.0),
new Double(3.0)};

String[] x4 = {"1.0", "2.0", "3.0"};

int[] dims = {1, 3};
MWNumericArray a1 =

4-14



Guidelines for Working with MWArray Classes

MWNumericArray.newInstance(dims, x1, MWClassID.DOUBLE);
MWNumericArray a2 =

MWNumericArray.newInstance(dims, x2, MWClassID.DOUBLE);
MWNumericArray a3 =

MWNumericArray.newInstance(dims, x3, MWClassID.DOUBLE);
MWNumericArray a4 =

MWNumericArray.newInstance(dims, x4, MWClassID.DOUBLE);

Similarly, the 2-by-2 matrix example can be rewritten as follows:

double[] x1 = {1.0, 3.0, 2.0, 4.0};
int[] x2 = {1, 3, 2, 4};
Double[] x3 = {new Double(1.0),

new Double(3.0),
new Double(2.0),
new Double(4.0)};

String[] x4 = {"1.0", "3.0"", "2.0", "4.0"};

int[] dims = {2, 2};
MWNumericArray a1 =

MWNumericArray.newInstance(dims, x1, MWClassID.DOUBLE);
MWNumericArray a2 =

MWNumericArray.newInstance(dims, x2, MWClassID.DOUBLE);
MWNumericArray a3 =

MWNumericArray.newInstance(dims, x3, MWClassID.DOUBLE);
MWNumericArray a4 =

MWNumericArray.newInstance(dims, x4, MWClassID.DOUBLE);

Note the order of the data in the input buffers. The matrix elements are
entered in column-wise order, which is the internal storage order used by
MATLAB.

Constructing Sparse Arrays
An efficient way to construct sparse matrices is to use the newSparse
constructor methods. The examples shown here create a 4-by-4 sparse matrix
with the following values:

x = [ 2 -1 0 0
-1 2 -1 0
0 -1 2 -1

4-15



4 Using MWArray Classes

0 0 -1 2 ]

Calling newSparse. The call to newSparse passes three arrays: an array of
matrix data (x), an array containing the row indices of x (rowindex), and an
array of column indices of x (colindex). The number of rows (4) and columns
(4) are also passed, as well as the type (MWClassID.DOUBLE):

double[] x = { 2.0, -1.0, -1.0, 2.0, -1.0,
-1.0, 2.0, -1.0, -1.0, 2.0 };

int[] rowindex = {1, 2, 1, 2, 3, 2, 3, 4, 3, 4};
int[] colindex = {1, 1, 2, 2, 2, 3, 3, 3, 4, 4};

MWNumericArray a =
MWNumericArray.newSparse(rowindex, colindex, x, 4, 4,

MWClassID.DOUBLE);

Constructing the Array Without Setting Rows and Columns. You could
have passed just the row and column arrays and let the newSparse method
determine the number of rows and columns from the maximum values of
rowindex and colindex as follows:

MWNumericArray a = MWNumericArray.newSparse(rowindex, colindex,
x, MWClassID.DOUBLE);

Constructing the Array from a Full Matrix. You can also construct a
sparse array from a full matrix using newSparse. The next example rewrites
the previous example using a full matrix:

double[][] x = {{ 2.0, -1.0, 0.0, 0.0},
{-1.0, 2.0, -1.0, 0.0},
{ 0.0 -1.0, 2.0, -1.0},
{ 0.0, 0.0, -1.0, 2.0 }};

MWNumericArray a = MWNumericArray.newSparse(x,
MWClassID.DOUBLE);

4-16



Guidelines for Working with MWArray Classes

Note Numeric sparse matrices are supported only for type double.
Attempting to construct a sparse numeric matrix with any other type results
in an exception being thrown.

Accessing MWNumericArray Elements
The MWNumericArray class provides methods for accessing and modifying
array data in the form of get and set methods. The following table lists the
get and set methods.

Method Usage

gettype(int) Returns the real part of the element at the
one-based index. Return value is of the
type specified (e.g., getDouble returns a
double).

gettype(int[]) Returns the real part of the element at the
one-based index array. Return value is of
the type specified (e.g., getDouble returns
a double).

getImagtype(int) Returns the imaginary part of the element
at the one-based index. Return value is
of the type specified (e.g., getImagDouble
returns a double).

getImagtype(int[]) Returns the imaginary part of the element
at the one-based index array. Return value
is of the type specified (e.g., getDouble
returns a double).

set(int, type) Replaces the real part of the element at the
one-based index with the supplied value

set(int[], type) Replaces the real part of the element at the
one-based index array with the supplied
value

4-17



4 Using MWArray Classes

Method Usage

setImag(int, type) Replaces the imaginary part of the element
at the one-based index with the supplied
value

setImag(int[], type) Replaces the imaginary part of the element
at the one-based index array with the
supplied value

In these method calls, type represents one of the following supported Java
types of MWNumericArray:

• double

• float

• byte

• short

• int

• long

• Boolean

• Subclass of java.lang.Number

• Subclass of java.lang.String

• Subclass of java.lang.Boolean

The get and set methods access a single element at a specified index. An
index is passed to these accessor methods in the form of a single offset or
as an array of indices.

Note All indexing is one-based, which is the MATLAB convention, as
opposed to zero-based, which is the Java convention.

4-18



Guidelines for Working with MWArray Classes

Examples of Using set. The following examples construct the 2-by-2 matrix
of the previous example using the set method. The first example uses a
single index:

int[] dims = {2, 2};
MWNumericArray a =

MWNumericArray.newInstance(dims, MWClassID.DOUBLE,
MWComplexity.REAL);

int index = 0;
double[] values = {1.0, 3.0, 2.0, 4.0};

for (int index = 1; index <= 4; index++)
a.set(index, values[index-1]);

Here is the same example, but this time using an index array:

int[] dims = {2, 2};
MWNumericArray a =

MWNumericArray.newInstance(dims, MWClassID.DOUBLE,
MWComplexity.REAL);

int[] index = new int[2];
int k = 0;

for (index[0] = 1; index[0] <= 2; index[0]++)
{

for (index[1] = 1; index[1] <= 2; index[1]++)
a.set(index, ++k);

}

The sparse array example can likewise be rewritten using set as follows:

MWNumericArray a =
MWNumericArray.newSparse(4, 4, 10, MWClassID.DOUBLE,

MWComplexity.REAL);
int[] index = {1, 1};

for (index[0] = 1; index[0] <= 4; index[0]++)
{

for (index[1] = 1; index[1] <= 4; index[1]++)
{

if (index[1] == index[0])

4-19



4 Using MWArray Classes

a.set(index, 2.0);
else if (index[1] == index[0]+1 || index[1] == index[0]-1)

a.set(index, -1.0);
}

}

The example allocates the 4-by-4 sparse matrix with a capacity of 10 nonzero
elements. Initially, the array has no nonzero elements. The for loops set the
array’s values using an index array.

Sparse arrays allocate storage only for the nonzero elements that are
assigned. This example preallocates the array with a capacity of 10 elements
because it is known in advance that this many nonzeros are needed. If you
set additional zero elements to nonzero values, the allocated capacity is
automatically increased to accommodate the new values.

Examples of Using get. The get methods work like the set methods. The
get methods support indexing through one-based offset or index array. The
next example displays the elements of an N-dimensional array where all
indices are equal:

public void printDiagonals(MWNumericArray a)
{

int[] dims = a.getDimensions();
int n = dims[0];

for (int i = 1; i < dims.length; i++)
{

if (dims[i] < n)
n = dims[i];

}

for (int i = 1; i <= n; i++)
{

for (int j = 0; j < dims.length; j++)
dims[j] = n;

System.out.print("[");

for (int j = 0; j < dims.length; j++)
System.out.print(i + (j!=dims.length-1?",":""));

4-20



Guidelines for Working with MWArray Classes

System.out.print("] = " + a.getDouble(dims));

if (a.complexity() == MWComplexity.COMPLEX)
System.out.print(" + "+a.getImagDouble(dims)+"i");

System.out.print("\n");
}

}

The next example sums the real parts of all the elements in a numeric array
and returns the result as a double value:

public double sumElements(MWNumericArray a)
{

double sum = 0.0;
int n = a.numberOfElements();

for (int i = 1; i <= n; i++)
sum = sum + a.getDouble(i);

return sum;
}

This example multiplies a Java double[][] with an MWNumericArray and
returns the result as a Java double[][]:

public double[][] matrixMult(double[][] a, MWNumericArray b)
{

int[] dims = b.getDimensions();
double[][] result = new double[a.length][dims[1]];
int[] index = new int[2];

for (int i = 0; i < result.length; i++)
{

double[] row = a[i];
if (row.length != dims[0])

throw new IllegalArgumentException("Incompatible dims");

for (index[1] = 1; index[1] <= result[0].length; index[1]++)
{

double sum = 0.0;

4-21



4 Using MWArray Classes

for (index[0] = 1; index[0] <= dims[0]; index[0]++)
sum += row[index[0]-1]*b.getDouble(index);

result[i][index[0]] = sum;
}

}
return result;

}

Working with Logical Arrays
The MWLogicalArray class provides a Java interface to a MATLAB logical
array. MWLogicalArrays can be dense or sparse.

Constructing an MWLogicalArray
The MWLogicalArray class provides a set of constructors and factory methods
for creating logical arrays. The following table lists the supplied constructors.

Constructor Usage

MWLogicalArray() Empty logical array

MWLogicalArray(type) Logical array with values initialized with
supplied data

Here, type represents supported Java types. MWLogicalArray supports the
following Java primitive types: double, float, byte, short, int, long,
and boolean. The following object types are also supported: subclasses of
java.lang.Number, java.lang.String, and java.lang.Boolean. In addition
to supporting scalar values of the types listed, general N-dimensional arrays
of each type are also supported.

When numeric types are used, the values in the logical array are set to true
if the input value is nonzero, and false otherwise. The following examples
create a scalar logical array with its value initialized to true:

MWLogicalArray a1 = new MWLogicalArray(true);
MWLogicalArray a2 = new MWLogicalArray(1);
MWLogicalArray a3 = new MWLogicalArray("true");
MWLogicalArray a4 = new MWLogicalArray(new Boolean(true));

4-22



Guidelines for Working with MWArray Classes

These examples construct a scalar logical array initialized to false:

MWLogicalArray a1 = new MWLogicalArray(false);
MWLogicalArray a2 = new MWLogicalArray(0);
MWLogicalArray a3 = new MWLogicalArray("false");
MWLogicalArray a4 = new MWLogicalArray(new Boolean(false));

As with MWNumericArray, MWLogicalArrays can be constructed with
multidimensional Java arrays. Here are some examples:

boolean[][] x1 = {{true, false}, {false, true}};
int[][] x2 = {{1, 0}, {0, 1}};

Boolean[][] x3 = {{new Boolean(true), new Boolean(false)},
{new Boolean(false), new Boolean(true)}};

String[][] x4 = {{"true", "false"},
{"false", "true"}};

boolean[][][] x5 = {
{{ true, false, true},
{ false, true, false}},

{{ true, false, true},
{ false, true, false}}

};

MWLogicalArray a1 = new MWLogicalArray(x1);
MWLogicalArray a2 = new MWLogicalArray(x2);
MWLogicalArray a3 = new MWLogicalArray(x3);
MWLogicalArray a4 = new MWLogicalArray(x4);
MWLogicalArray a5 = new MWLogicalArray(x5);

Using Static Factory Methods to Create MWLogicalArrays
The following table lists the static factory methods of MWLogicalArray.

Factory Method Usage

newInstance(int[]) New logical array. Values are
initialized to false.

4-23



4 Using MWArray Classes

Factory Method Usage

newInstance(int[], Object) New logical array. Values are
initialized with supported data.

newSparse(int[], int[],
Object, int, int, int)

Sparse logical matrix of specified
dimensions and maximum nonzeros.
Values are initialized with supplied
row, column, and data arrays.

newSparse(int[], int[],
Object, int, int)

Sparse logical matrix of specified
dimensions. Values are initialized
with supplied row, column, and data
arrays. Maximum nonzeros are
computed from input data.

newSparse(int[], int[],
Object)

Sparse logical matrix. Values
are initialized with supplied row,
column, and data arrays. Maximum
nonzeros and dimensions are
computed from input data.

newSparse(Object) Sparse logical matrix. Values are
initialized from supplied full matrix.

These methods all return a new MWLogicalArray instance constructed from
the input information. You can use these methods to construct and initialize
an array with supplied data, or to construct an array of a specified size
and initialize all values to false. The main difference is that, exception
for the last newSparse method, data is supplied to the factory methods in
one-dimensional arrays with the data arranged in column-wise order.

The following examples rewrite the two-dimensional array constructor
examples using newInstance:

boolean[] x1 = {true, false, false, true};
int[] x2 = {1, 0, 0, 1};
Boolean[] x3 = {new Boolean(true), new Boolean(false),

new Boolean(false), new Boolean(true)};
String[] x4 = {"true", "false', "false", "true"};

int[] dims = {2, 2};

4-24



Guidelines for Working with MWArray Classes

MWLogicalArray a1 = MWLogicalArray.newInstance(dims, x1);
MWLogicalArray a2 = MWLogicalArray.newInstance(dims, x2);
MWLogicalArray a3 = MWLogicalArray.newInstance(dims, x3);
MWLogicalArray a4 = MWLogicalArray.newInstance(dims, x4);

Accessing MWLogicalArray Elements
The MWLogicalArray class provides methods for accessing and modifying
array data in the form of get and set methods. The following table lists the
get and set methods.

Method Usage

get(int) Returns the element at the one-based index as type
java.lang.Boolean (inherited from MWArray).

get(int[]) Returns the element at the one-based index array as
type java.lang.Boolean (inherited from MWArray).

getBoolean(int) Returns the element at the one-based index as type
boolean.

getBoolean(int[]) Returns the element at the one-based index array as
type boolean.

set(int, Object) Replaces the element at the one-based index with
the supplied value (inherited from MWArray).

set(int[],
Object)

Replaces the element at the one-based index array
with the supplied value (inherited from MWArray).

set(int, boolean) Replaces the element at the one-based index with
the supplied boolean value.

set(int[],
boolean)

Replaces element at the one-based index array with
the supplied boolean value.

The get methods return a java.lang.Boolean representing the value at
the specified index. The getBoolean methods do the same thing, except
they return a primitive boolean value. The set methods replace the value
at the specified index with the supplied value. These methods collectively
support the same types as the MWLogicalArray constructors: boolean,

4-25



4 Using MWArray Classes

double, float, byte, short, int, long, java.lang.Boolean, subclasses of
java.lang.Number, and java.lang.String.

Examples of Using set and get Methods. This example constructs a
random sparse logical matrix with a specified fraction of nonzero elements:

MWLogicalArray getRandomSparse(int m, int n, double fillFactor)
{

if (m < 0 || n < 0)
throw new IllegalArgumentException(

"Dimensions must be positive");

if (fillFactor < 0.0 || fillFactor > 1.0)
throw new IllegalArgumentException(

"Fill factor must be between 0.0 and 1.0");

int nsize = (int)(m*n*fillFactor);
MWLogicalArray a = newSparse(m, n, nsize);
if (nsize == 0)

return a;

while (a.numberOfNonZeros() < nsize)
{

int k = (int)(m*n*java.lang.Math.random());
a.set((k != 0 ? k : 1), true);

}
return a;

}

This example toggles all elements of a logical array from true/false to
false/true:

void toggleArray(MWLogicalArray a)
{

for (int k = 1; k <= a.numberOfElements(); k++)
a.set(k, !getBoolean(k));

}

Working with Character Arrays
The MWCharArray class provides a Java interface to a MATLAB char array.

4-26



Guidelines for Working with MWArray Classes

Constructing an MWCharArray
The MWCharArray class provides a set of constructors and factory methods for
creating logical arrays. The following table lists the supplied constructors.

Constructor Usage

MWCharArray() Empty char array

MWCharArray(type) char array with values initialized with supplied
data

Here, type represents supported Java types. MWCharArray supports the
following Java types: char, java.lang.Character, and java.lang.String.
In addition to supporting scalar values of the types listed, general
N-dimensional arrays of each type are also supported. The following examples
create scalar char arrays:

MWCharArray a1 = new MWCharArray('a');
MWCharArray a2 = new MWCharArray(new Character('a'));

Constructing Strings. You can use the MWCharArray class to create character
strings, as shown in these examples:

char[] x1 = {'A', ' ', 'S', 't', 'r', 'i', 'n', 'g'};
String x2 = "A String";
Character[] x3 = {

new Character('A'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),
new Character('g')};

MWCharArray a1 = new MWCharArray(x1);
MWCharArray a2 = new MWCharArray(x2);
MWCharArray a3 = new MWCharArray(x3);

4-27



4 Using MWArray Classes

Constructing an N-Dimensional Character Array. You can create a
multidimensional char array using a multidimensional array of either char
or java.lang.Character, or by using an array of java.lang.String, as
shown in these examples:

char[][] x1 = {{'A', ' ', 'S', 't', 'r', 'i', 'n', 'g'}
{'A', 'n', 'o', 't', 'h', 'e', 'r', ' ',
'S', 't', 'r', 'i', 'n', 'g'}};

String[] x2 = {"A String",
"Another String"};

Character[][] x3 = {
{new Character('A'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),
new Character('g')},

{new Character('A'),
new Character('n'),
new Character('o'),
new Character('t'),
new Character('h'),
new Character('e'),
new Character('r'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),
new Character('g')}

};

MWCharArray a1 = new MWCharArray(x1);
MWCharArray a2 = new MWCharArray(x2);
MWCharArray a3 = new MWCharArray(x3);

4-28



Guidelines for Working with MWArray Classes

The a1, a2, and a3 arrays constructed all contain a 2-by-14 MATLAB char
array. The column count of the array is equal to the largest string length in
the input array. Rows with fewer characters than the maximum are Null
padded. Arrays with larger numbers of dimensions are handled similarly.
This behavior parallels the way that MWNumericArray and MWLogicalArray
handle jagged arrays.

Using Static Factory Methods for Constructing MWCharArrays
The following table lists the factory methods of MWCharArray.

Factory Method Usage

newInstance(int[]) New char array. Values are initialized to Null.

newInstance(int[]
Object)

New char array. Values are initialized with
supported data.

These methods all return a new MWCharArray instance constructed from the
input information. You can use these methods to construct and initialize
an array with supplied data, or to construct an array of a specified size and
initialize all values to zero. The main difference is that data is supplied to
the factory methods in one-dimensional arrays with the data arranged in
column-wise order. The input data array must be either a one-dimensional
array of char, a one-dimensional array of java.lang.Character, or a single
java.lang.String.

Rewriting Strings Using the newInstance Method. The following
examples rewrite the character string examples using newInstance:

char[] x1 = {'A', ' ', 'S', 't', 'r', 'i', 'n', 'g'};
String x2 = "A String";
Character[] x3 =
{

new Character('A'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),

4-29



4 Using MWArray Classes

new Character('g')
};

int[] dims = {1, 8};
MWCharArray a1 = MWCharArray.newInstance(dims, x1);
MWCharArray a2 = MWCharArray.newInstance(dims, x2);
MWCharArray a3 = MWCharArray.newInstance(dims, x3);

Constructing a Two-Dimensional Character Array. This example
constructs the two-dimensional char array of the previous example:

char[] x1 = ('A', 'A', ' ', 'n', 'S', 'o', 't', 't', 'r', 'h',

'i', 'e', 'n', 'r', 'g', ' ', '\0', 'S', '\0', 't',

'\0', 'r', '\0', 'i', '\0', 'n', '\0', 'g'};

int[] dims = {2, 14};

MWCharArray a1 = MWCharArray.newInstance(dims, x1);

Note that the array of characters supplied to initialize the array is arranged
in column-wise order, and the end of the shorter string is padded with Null
characters (’\0’). Higher dimensional character arrays can be constructed
using the same procedure.

Accessing MWCharArray Elements
The MWCharArray class provides methods for accessing and modifying array
data in the form of get and set methods. The following table lists the get
and set methods.

Method Usage

get(int) Returns the element at the one-based index as type
java.lang.Character (inherited from MWArray).

get(int[]) Returns the element at the one-based index array as
type java.lang.Character (inherited from MWArray).

getChar(int) Returns the element at the one-based index as type
char.

getChar(int[]) Returns the element at the one-based index array as
type char.

4-30



Guidelines for Working with MWArray Classes

Method Usage

set(int,
Object)

Replaces the element at the one-based index with the
supplied value (inherited from MWArray).

set(int[],
Object)

Replaces the element at the one-based index array
with the supplied value (inherited from MWArray).

set(int, char) Replaces the element at the one-based index with the
supplied char value.

set(int[],
char)

Replaces element at the one-based index array with
the supplied char value.

The get methods return a java.lang.Character representing the character
at the specified index. The getChar methods do the same thing, except they
return a primitive char value. The set methods replace the character at the
specified index with the supplied value. These methods collectively support
types char, java.lang.Character, and java.lang.String (use a String of
length 1 to pass a character to replace).

Replacing Character Occurrences Using MWCharArray Methods. This
example replaces every occurrence of a given character in an MWCharArray
with a specified new character:

void replaceWithChar(MWCharArray a, char ch, char newch)
{

if (a == null)
return;

for (int k = 1; k <= a.numberOfElements(); k++)
{

if (a.getChar(k) == ch)
a.setChar(k, newch);

}
}

Working with Cell Arrays
The MWCellArray class provides a Java interface to a MATLAB cell array.

4-31



4 Using MWArray Classes

Using MWCellArray Constructors
The MWCellArray class provides the following constructors:

Constructor Usage

MWCellArray() Empty cell array.

MWCellArray(int[]) New cell array with specified dimensions. All
cells are initialized to empty.

MWCellArray(gint, int) New cell matrix with specified number of rows
and columns.

Constructing a cell array is a two-step process. First, allocate the array using
one of the constructors in the previous table, then assign values to each cell
using one of the set methods.

Constructing an MWCellArray. For simple arrays, passing a Java array
directly is the most convenient approach. When you want to assign a more
complicated type to a cell (i.e., a complex array or another cell array), you
must create a temporary MWArray for the input value. You should dispose of
any temporary arrays after assigning them to a cell.

This example creates and initializes a 2-by-2 cell array:

String x11 = "A String";
double[][] x12 = {{1.0, 2.0},

{3.0, 4.0}};
int[][] x21 = {{1, 2},

{3, 4}};
boolean[][] x22 = {{true, false},

{false, true}};

int[] index = {1, 1};
a.set(index, x11);
index[1] = 2;
a.set(index, x12);
index[0] = 2;
a.set(index, x22);
index[1] = 1;
a.set(index, x21);

4-32



Guidelines for Working with MWArray Classes

Here, each cell is initialized with a Java array, and default conversion rules
are used to create the MATLAB array for each cell.

Constructing an MWCellArray Containing Complex Arrays. The next
example creates a helper function that constructs a cell array containing a list
of complex double arrays. The real and imaginary parts of each cell are passed
in the re and im arrays, respectively. The new cell array has dimensions
1-by-N, where N is the length of the input arrays, which must be the same.

MWCellArray createNumericCell(Object[] re, Object[] im)
throws MWException

{
if (re == null || im == null)

throw new MWException("Invalid input");
if (re.length != im.length)

throw new MWException(
"Input arrays must be the same length");

MWCellArray a = null;
MWNumericArray x = null;

try
{

a = new MWCellArray(1, re.length);
for (int k = 1; k <= re.length; k++)
{

x = new MWNumericArray(re[k-1], im[k-1],
MWClassID.DOUBLE);

a.set(k, x);
x.dispose();
x = null;

}
return a;

}

catch (Exception e)
{

if (a != null)
a.dispose();

4-33



4 Using MWArray Classes

if (x != null)
x.dispose();

throw new MWException(e.getMessage());
}

}

This method creates a new MWCellArray of the necessary size. Next, the
code loops over the number of elements in the supplied arrays. For each loop
iteration, a temporary MWNumericArray, x, is created for the current cell and
initialized with the contents of re[k-1] and im[k-1] (the loop variable, k, is
one-based). A shared copy of the temporary numeric array is then assigned to
the cell at k using the set method.

The native resources associated with x are freed when you call dispose. If an
exception is thrown during the construction phase, the partially constructed
cell array and the temporary numeric array are disposed of, if necessary.
The exception is then rethrown as an MWException. If everything goes well,
the MWCellArray is returned.

Accessing MWCellArray Elements
The MWCellArray class provides methods for accessing and modifying array
data in the form of get and set methods. The following table lists the get
and set methods.

Method Usage

get(int) Returns the element at the one-based index as a Java
array (inherited from MWArray).

get(int) Returns the element at the one-based index array as
a Java array (inherited from MWArray).

getCell(int) Returns the element at the one-based index as an
MWArray instance.

getCell(int[]) Returns the element at the one-based index array
as an MWArray instance.

4-34



Guidelines for Working with MWArray Classes

Method Usage

set(int, Object) Replaces the element at the one-based index with the
supplied value (inherited from MWArray).

set(int[],
Object)

Replaces the element at the one-based index array
with the supplied value (inherited from MWArray).

The set methods replace the cell at the specified index with the supplied
value. The cell value can be passed as any supported Java type or as an
MWArray instance. When the cell value is passed as a Java type, the value is
converted to a MATLAB array using default conversion rules. When the value
is passed as an MWArray, the cell is assigned a shared copy of the underlying
MATLAB array.

Using getCell. The getCell methods return an MWArray instance of the
proper subclass type representing a shared copy of the underlying cell. The
array returned by getCell should be disposed of when it is no longer needed.
This is the most efficient way of accessing a cell, because an MWArray object is
created to encapsulate a shared copy of the underlying array. This process is
significantly more efficient than converting the entire array to a Java array
each time you access the cell. The next example prints information about a
cell array to standard output:

void printCellInfo(MWCellArray a)
{

if (a == null)
return;

MWArray c = null;
int n = a.numberOfElements();
System.out.println("Number of elements: " + n);

try
{

for (int k = 1; k <= n; k++)
{

c = a.getCell(k);
System.out.println("cell: " + k + " type: " +

a.classID());
c.dispose();
c = null;

4-35



4 Using MWArray Classes

}
}

finally
{

if (c != null)
c.dispose();

}
}

This method loops through the array and prints the type of each cell. The
temporary array returned by getCell is disposed of after it is used. The
finally clause ensures that the array is disposed of before exiting, in the
case of an exception. MWCellArray also overrides the MWArray.get methods.
In this case, a Java array is returned that represents a conversion of the
underlying cell, as would be returned by toArray.

Using get. You can think of get as being implemented as follows:

Object get(int index)
{

MWArray a = null;
try
{

a = this.getCell(index);
return a.toArray();

}

finally
{

if (a != null)
a.dispose();

}
}

Using get, you can retrieve the cells from the first MWCellArray example
as Java arrays.

int[] index = {1, 1};
String x11 = (String)a.get(index);

4-36



Guidelines for Working with MWArray Classes

index[1] = 2;
double[][] x12 = (double[][])a.get(index);
index[0] = 2;
boolean[][] x22 = (boolean[][])a.get(index);
index[1] = 1;
int[][] x21 = (int[][])a.get(index);

As with set, default conversion rules are applied (same rules as apply to
toArray). In this example, the default rules are fine. In the case where
complex arrays, other cell arrays, or struct arrays are stored in the cell array,
it is recommended to use getCell to return an MWArray instance.

toArray and getData Methods
In addition to get and getCell, the toArray and getData methods are
implemented on MWCellArray to return a conversion of the entire cell array.
These methods provide a bulk conversion to an array of Java arrays, although
the output can be difficult to dissect in some cases (particularly in the case
of nested cell arrays).

The getData method returns a one-dimensional array of type Object. Each
element of the return cell array is converted by calling toArray on the
corresponding cell.

The toArray method returns the same array, except that it has the same
dimensionality as the underlying cell array.

4-37



4 Using MWArray Classes

Using Class Methods
Use MWArray classes to construct data types as needed in your Java code.
You can use the following classes to create objects that correspond to the
basic MATLAB data types:

• Using MWArray

• Using MWNumericArray

• Using MWLogicalArray

• Using MWCharArray

• Using MWStructArray

• Using MWCellArray

• MWClassID

• Using MWComplexity

Using MWArray
This section covers topics on MWArray:

• “Constructing an MWArray” on page 4-38

• “Methods to Create and Destroy an MWArray” on page 4-39

• “Methods to Return Information About an MWArray” on page 4-40

• “Methods to Get and Set Data in the MWArray” on page 4-44

• “Methods to Copy, Convert, and Compare MWArrays” on page 4-49

• “Methods to Use on Sparse MWArrays” on page 4-54

Constructing an MWArray
Use this constructor to create an empty two-dimensional MWArray object:

MWArray()

The type given to this object is MWClassID.UNKNOWN.

4-38



Using Class Methods

Example. Construct an empty MWArray object:

MWArray A = new MWArray();

Methods to Create and Destroy an MWArray
Use these methods to destroy an object of class MWArray or any of its child
classes.

Method Description

“dispose” on
page 4-39

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-40

Frees all native MATLAB arrays contained in the input
object.

dispose. This method destroys the native MATLAB array contained by the
array object and frees the memory occupied by the array.

The prototype for the dispose method is as follows:

public void dispose()

Input Parameters

None

Example — Constructing an MWArray Object

Construct and then destroy an MWArray object:

MWArray A = new MWArray();

A.dispose();

4-39



4 Using MWArray Classes

disposeArray. This method destroys any native MATLAB arrays contained
in the input object and frees the memory occupied by them. This is a static
method of the class and thus does not need to be invoked in reference to an
instance of the class.

The prototype for the disposeArray method is as follows:

public static void disposeArray(Object arr)

Input Parameters

arr

Object to be disposed of

If the input object represents a single MWArray instance, then that instance is
freed when you call its dispose() method.

If the input object represents an array of MWArray instances, each object in the
array is disposed of.

If the input object represents an array of Object or a multidimensional array,
the array is recursively processed to free each MWArray contained in the array.

Example — Constructing an MWNumericArray Object

Construct and then destroy an array of numeric objects:

MWArray[] MArr = new MWArray[10];
for (int i = 0; i < 10; i++)

MArr[i] = new MWNumericArray();

MWArray.disposeArray(MArr);

Methods to Return Information About an MWArray
Use these methods to return information about an object of class MWArray or
any of its child classes.

4-40



Using Class Methods

Method Description

“classID” on page 4-41 Returns the MATLAB type of the array.

“getDimensions” on page 4-42 Returns the size of each dimension of the
array.

“isEmpty” on page 4-42 Tests if the array has no elements.

“numberOfDimensions” on page
4-43

Returns the number of dimensions of the
array.

“numberOfElements” on page
4-43

Returns the total number of elements in
the array.

The examples in the following sections use a 3-by-6 MWNumericArray object
A, as constructed by this Java code:

int[][] Adata = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8, 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(Adata, MWClassID.INT32);

classID. This method returns the MATLAB type of the MWArray object. The
return type is a field defined by the MWClassID class.

The prototype for the classID method is as follows:

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of an MWArray

Return the class ID for an MWNumericArray object created previously:

System.out.println("Class of A is " + A.classID());

4-41



4 Using MWArray Classes

When run, the example displays this output:

Class of A is int32

getDimensions. This method returns a one-dimensional int array
containing the size of each dimension of the MWArray object.

The prototype for the getDimensions method is as follows:

public int[] getDimensions()

Input Parameters

None

Example — Getting Array Dimensions of an MWArray

int[] dimA = A.getDimensions();

System.out.println("Dimensions of A are " +
dimA[0] + " x " + dimA[1]);

When run, the example displays this output:

Dimensions of A are 3 x 6

isEmpty. This method returns true if the array object contains no elements,
and false otherwise.

The prototype for the isEmpty method is as follows:

public boolean isEmpty()

Input Parameters

None

4-42



Using Class Methods

Example — Testing for an Empty MWArray

Display a message if array object A is an empty array. Otherwise, display
the contents of A:

if (A.isEmpty())
System.out.println("Matrix A is empty");

else
System.out.println("A = " + A.toString());

When run, the example displays the contents of A:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

numberOfDimensions. This method returns the number of dimensions of
the array object.

The prototype for the numberOfDimensions method is as follows:

public int numberOfDimensions()

Input Parameters

None

Example — Getting the Number of Dimensions of an MWArray

Display the number of dimensions for array object A:

System.out.println("Matrix A has " + A.numberOfDimensions() +
" dimensions");

When run, the example displays this output:

Matrix A has 2 dimensions

numberOfElements. This method returns the total number of elements in
the array object.

4-43



4 Using MWArray Classes

The prototype for the numberOfElements method is as follows:

public int numberOfElements()

Input Parameters

None

Example — Getting the Number of MWArray Elements

Display the number of elements in array object A:

System.out.println("Matrix A has " + A.numberOfElements() +
" elements");

When run, the example displays this output:

Matrix A has 18 elements

Methods to Get and Set Data in the MWArray
Use these methods to get and set values in an object of class MWArray or any of
its child classes.

Method Description

“get” on page 4-45 Returns the element at the specified one-based
offset or index array as an Object.

“getData” on page
4-46

Returns a one-dimensional array containing a copy
of the data in the underlying MATLAB array. The
array is in column-wise order.

“set” on page 4-47 Replaces the element at the specified one-based
offset, or index array, in this array with the specified
element.

“toArray” on page
4-48

Returns an array containing a copy of the data in
the underlying MATLAB array. The returned array
has the same dimensionality as the MATLAB array.

4-44



Using Class Methods

get. This method returns the element located at the specified one-based offset
or index array in the array object. The element is returned as an Object.

To get the element at a specific index, use one of the following:

public Object get(int index)
public Object get(int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector is
an index along one dimension of the MWArray object. The valid range for any
index is 1 <= index[i] <= N[i], where N[i] is the size of the ith dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-45



4 Using MWArray Classes

Example — Getting an MWArray Value with get

Retrieve element (2, 4) from array object A:

int[] index = {2, 4};

Object d_out = A.get(index);
System.out.println("Data read from A(2,4) is " +

d_out.toString());

When run, the example displays this output:

Data read from A(2,4) is 10

getData. This method returns all elements of the MWArray object. Elements
are returned in a one-dimensional array, in column-wise order. Elements
are returned as type Object.

The prototype for the getData method is as follows:

public Object getData()

Input Parameters

None

The elements of the returned array are converted according to default
conversion rules. If the underlying MATLAB array is a complex numeric
type, getData returns the real part.

Example — Getting an MWArray Value with getData

Get the data from MWArray object A, casting the type from Object to int:

System.out.println("Data read from matrix A is:");

int[] x = (int[]) A.getData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + x[i]);

4-46



Using Class Methods

System.out.println();

When run, the example displays this output:

Data read from matrix A is:
1 7 13 2 8 14 3 9 15 4 10 16 5 11 17 6 12 18

set. This method replaces the element at a specified index in the MWArray
object with the input element.

To set the element at a specific index, use one of the following:

public void set(int index, Object element)
public void set(int[] index, Object element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

index

Index of the requested element in the MWArray.

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector is
an index along one dimension of the MWArray object. The valid range for any
index is 1 <= index[i] <= N[i], where N[i] is the size of the ith dimension.

4-47



4 Using MWArray Classes

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting an MWArray Value

Modify the data in element (2, 4) of MWArray object A:

int[] index = {2, 4};
A.set(index, 555);

Object d_out = A.get(index);
System.out.println("Data read from A(2,4) is " +

d_out.toString());

When run, the example displays this output:

Data read from A(2,4) is 555

toArray. This method creates an array with the same dimensionality as the
MATLAB array.

The prototype for the toArray method is as follows:

public Object[] toArray()

The elements of the returned array are converted according to default
conversion rules. If the underlying MATLAB array is a complex numeric
type, toArray returns the real part.

Input Parameters

None

4-48



Using Class Methods

Example — Getting an MWArray with toArray

Create and display a copy of MWArray object A:

int[][] x = (int[][]) A.toArray();
int[] dimA = A.getDimensions();

System.out.println("Matrix A is:");
for (int i = 0; i < dimA[0]; i++)

{
for (int j = 0; j < dimA[1]; j++)

System.out.print(" " + x[i][j]);
System.out.println();
}

When run, the example displays this output:

Matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

Methods to Copy, Convert, and Compare MWArrays
Use these methods to copy, convert, and compare objects of class MWArray or
any of its child classes.

Method Description

“clone” on page
4-50

Creates and returns a deep copy of this array.

“compareTo” on
page 4-51

Compares this array with the specified array for order.

“equals” on page
4-52

Indicates whether some other array is equal to this one.

“hashCode” on
page 4-52

Returns a hash code value for the array.

4-49



4 Using MWArray Classes

Method Description

“sharedCopy” on
page 4-53

Creates and returns a shared copy of this array.

“toString” on page
4-54

Returns a string representation of the array.

clone. This method creates and returns a deep copy of the MWArray object.
Because clone allocates a new array, any changes made to this new array are
not reflected in the original.

The prototype for the clone method is as follows:

public Object clone()

Input Parameters

None

Exceptions

The clone method throws the following exception:

java.lang.CloneNotSupportedException

The object’s class does not implement the Cloneable interface.

Example — Cloning an MWArray Object

Create a clone of MWArray object A:

Object C = A.clone();

System.out.println("Clone of matrix A is:");
System.out.println(C.toString());

4-50



Using Class Methods

When run, the example displays this output:

Clone of matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

compareTo. This method compares the MWArray object with the input object.
It returns a negative integer, zero, or a positive integer if the MWArray object is
less than, equal to, or greater than the specified object, respectively.

The prototype for the compareTo method is as follows:

public int compareTo(Object obj)

See the compareTo method in interface java.lang.Comparable for a full
description of the return value.

Input Parameters

obj

Array to compare this MWArray object to

Example — Comparing MWArrays with compareTo

Create a shared copy of the MWArray object and then compare it to the original
object. A return value of zero indicates that the two objects are equal:

Object S = A.sharedCopy();

if (A.compareTo(S) == 0)
System.out.println("Matrix S is equal to matrix A");

When run, the example displays this output:

Matrix S is equal to matrix A

4-51



4 Using MWArray Classes

equals. This method indicates the MWArray object is equal to the input
object. The equals method of the MWArray class overrides the equals method
of class Object.

The prototype for the equals method is as follows:

public boolean equals(Object object)

Input Parameters

object

Array to compare this MWArray object to

Example — Comparing MWArrays with equals

Create a shared copy of the MWArray object and then compare it to the original
object. A return value of true indicates that the two objects are equal:

Object S = A.sharedCopy();

if (A.equals(S))
System.out.println("Matrix S is equal to matrix A");

When run, the example displays this output:

Matrix S is equal to matrix A

hashCode. This method returns a hash code value for the MWArray object.
The hashCode method of the MWArray class overrides the hashCode method
of class Object.

The prototype for the hashCode method is as follows:

public int hashCode()

Input Parameters

None

4-52



Using Class Methods

Example — Getting an MWArray Hash Code

Obtain the hash code for MWArray object A:

System.out.println("Hash code for matrix A is " + A.hashCode());

When run, the example displays this output:

Hash code for matrix A is 456687478

sharedCopy. This method creates and returns a shared copy of the array.
The shared copy points to the underlying original MATLAB array. Any
changes made to the copy are reflected in the original.

The prototype for the sharedCopy method is as follows:

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of an MWArray

Create a shared copy of MWArray object A:

Object S = A.sharedCopy();

System.out.println("Shared copy of matrix A is:");
System.out.println(S.toString());

When run, the example displays this output:

Shared copy of matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

4-53



4 Using MWArray Classes

toString. This method returns a string representation of the array. The
toString method of the MWArray class overrides the toString method of
class Object.

The prototype for the toString method is as follows:

public java.lang.String toString()

Input Parameters

None

Example — Converting an MWArray to a String

Display the contents of MWArray object A:

System.out.println("A = " + A.toString());

When run, the example displays the contents of A:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

Methods to Use on Sparse MWArrays
Use these methods to return information on sparse arrays of type MWArray or
any of its child classes.

Method Description

“isSparse” on page
4-55

Tests whether the array is sparse.

“columnIndex” on page
4-56

Returns an array containing the column index of
each nonzero element in the underlying MATLAB
array.

“rowIndex” on page
4-57

Returns an array containing the row index of each
nonzero element in the underlying MATLAB array.

4-54



Using Class Methods

Method Description

“maximumNonZeros”
on page 4-57

Returns the allocated capacity of a sparse array.
If the underlying array is nonsparse, this method
returns the same value as numberOfElements().

“numberOfNonZeros”
on page 4-58

Returns the number of nonzero elements in
a sparse array. If the underlying array is
nonsparse, this method returns the same value as
numberOfElements().

The examples that follow use the sparse MWArray object constructed below
using the “newSparse” on page 4-66 method of MWNumericArray:

double[] Adata = { 0, 10, 0, 0, 40, 50, 60, 0, 0, 90};

int[] ri = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
int[] ci = {1, 2, 3, 4, 5, 1, 2, 3, 4, 5};

MWNumericArray A = MWNumericArray.newSparse(ri, ci,
Adata, MWClassID.DOUBLE);

System.out.println(A.toString());

Here are the contents of the sparse MWArray:

(2,1) 50
(1,2) 10
(2,2) 60
(1,5) 40
(2,5) 90

isSparse. This method returns true if the MWArray object is sparse, and
false otherwise.

The prototype for the isSparse method is as follows:

public boolean isSparse()

4-55



4 Using MWArray Classes

Input Parameters

None

Example — Testing an MWArray for Sparseness

Test the MWArray object A created previously for sparseness:

if (A.isSparse())
System.out.println("Matrix A is sparse");

When run, the example displays this output:

Matrix A is sparse

columnIndex. This method returns an array containing the column index of
each element in the underlying MATLAB array.

The prototype for the columnIndex method is as follows:

public int[] columnIndex()

Input Parameters

None

Example — Getting the Column Indices of a Sparse MWArray

Get the column indices of the elements of the sparse array:

System.out.print("Column indices are: ");
int[] colidx = A.columnIndex();
for (int i = 0; i < 5; i++)

System.out.print(colidx[i] + " ");
System.out.println();

When run, the example displays this output:

Column indices are: 1 2 2 5 5

4-56



Using Class Methods

rowIndex. This method returns an array containing the row index of each
element in the underlying MATLAB array.

The prototype for the rowIndex method is as follows:

public int[] rowIndex()

Input Parameters

None

Example — Getting the Row Indices of a Sparse MWArray

Get the row indices of the elements of the sparse array:

System.out.print("Row indices are: ");
int[] rowidx = A.rowIndex();
for (int i = 0; i < 5; i++)

System.out.print(rowidx[i] + " ");
System.out.println();

When run, the example displays this output:

Row indices are: 2 1 2 1 2

maximumNonZeros. This method returns the allocated capacity of a
sparse array. If the underlying array is nonsparse, this method returns the
same value as numberOfElements.

The prototype for the maximumNonZeros method is as follows:

public int maximumNonZeros()

Input Parameters

None

4-57



4 Using MWArray Classes

Example — Getting the Maximum Number of Nonzeros in an
MWArray

Display the maximum number of nonzeros for this array:

System.out.println("Maximum number of nonzeros for matrix A is "
+ A.maximumNonZeros());

When run, the example displays this output:

Maximum number of nonzeros for matrix A is 10

numberOfNonZeros. This method returns the number of nonzero elements
in a sparse array. If the underlying array is nonsparse, this method returns
the same value as numberOfElements.

The prototype for the numberOfNonZeros method is as follows:

public int numberOfNonZeros()

Input Parameters.

None

Example — Getting the Number of Nonzeros in an MWArray

Display the number of nonzero values in this array:

System.out.println("The number of nonzeros for matrix A is " +
A.numberOfNonZeros());

When run, the example displays this output:

The number of nonzeros for matrix A is 5

Using MWNumericArray
This section covers the following topics:

• “Constructing an MWNumericArray” on page 4-59

4-58



Using Class Methods

• “Methods to Create and Destroy an MWNumericArray” on page 4-63

• “Methods to Get and Set the Real Parts of an MWNumericArray” on page
4-75

• “Methods to Get and Set the Imaginary Parts of an MWNumericArray”
on page 4-79

• “Methods to Copy, Convert, and Compare MWNumericArrays” on page 4-87

• “Methods to Use on Sparse MWNumericArrays” on page 4-90

• “Methods to Return Special Constant Values” on page 4-90

Constructing an MWNumericArray
Use the tables in this section to construct an MWNumericArray from a
particular Java data type. See the examples at the end of this section for
more help.

• “Constructing an Empty Scalar” on page 4-59

• “Constructing a Real or Complex Numeric Scalar” on page 4-60

• “Constructing a Real or Complex Numeric Array” on page 4-61

In addition to using the MWNumericArray constructor, you can also use
“newSparse” on page 4-66 to construct an MWNumericArray. These two
methods provide better performance than the constructor.

Constructing an Empty Scalar. Use either of the following constructors to
create an empty scalar MWNumericArray:

To construct an empty scalar of type MWClassID.DOUBLE, use the following:

MWNumericArray()

To construct an empty scalar of type classid, use the following:

MWNumericArray(MWClassID classid)

4-59



4 Using MWArray Classes

Example — Constructing an Empty Numeric Array Object

Create an empty scalar of type int64:

MWNumericArray A = new MWNumericArray(MWClassID.INT64);
System.out.println("A = " + A);

When you run this example, the results are as follows:

A = []

Constructing a Real or Complex Numeric Scalar. Use this constructor
syntax to create a real scalar MWNumericArray from a primitive Java type:

MWNumericArray(javatype realValue)

Or use this syntax to create a complex scalar MWNumericArray from a
primitive Java type:

MWNumericArray(javatype realValue, javatype imagValue)

The class ID for the returned MWNumericArray is shown in the following table:

javatype
Input Class ID of MWNumericArray

double MWClassID.DOUBLE

float MWClassID.SINGLE

long MWClassID.INT64

int MWClassID.INT32

short MWClassID.INT16

byte MWClassID.INT8

Exceptions

The MWNumericArray constructor throws the following exception:

ArrayStoreException

4-60



Using Class Methods

A nonnumeric array type was specified.

Example — Constructing an Integer Array Object

Construct a scalar numeric array of type MWClassID.INT16:

double AReal = 24;

MWNumericArray A = new MWNumericArray(AReal, MWClassID.INT16);
System.out.println("Array A of type " + A.classID() + " = \n" + A);

When you run this example, the results are as follows:

Array A of type int16 =
24

Example — Constructing a Complex Array Object

Construct a numeric scalar having real and imaginary parts:

double AReal = 24;
double AImag = 5;

MWNumericArray A = new MWNumericArray(AReal, AImag);
System.out.println("Array A of type " + A.classID() + " = \n" + A);

When you run this example, the results are as follows:

Array A of type double =
24.0000 + 5.0000i

Constructing a Real or Complex Numeric Array. Use this constructor
syntax to create a real nonscalar MWNumericArray from a primitive Java type:

MWNumericArray(javatype realValue, MWClassID classid)

Or use this syntax to create a complex nonscalar MWNumericArray from a
primitive Java type:

MWNumericArray(javatype realValue, javatype imagValue,

4-61



4 Using MWArray Classes

MWClassID classid)

The type javatype can be any of the following:

• double

• float

• long

• int

• short

• byte

• boolean

• Object

Example — Constructing a Real Array of a Specific Type

Construct a 3-by-6 real array of type MWClassID.SINGLE:

double[][] AData = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8 , 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(AData, MWClassID.SINGLE);
System.out.println("Array A = \n" + A);

When run, the example displays this output:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

Example — Constructing a Complex Array of a Specific Type

Construct a 1-by-3 complex array of MWClassID.DOUBLE:

double[] AReal = {24.2, -7, 113};
double[] AImag = {5, 31, 27};

4-62



Using Class Methods

MWNumericArray A =
new MWNumericArray(AReal, AImag, MWClassID.DOUBLE);

System.out.println("Array A of type " + A.classID() + " = \n" + A);

When run, the example displays this output:

Array A of type double =
1.0e+002 *

0.2420 + 0.0500i -0.0700 + 0.3100i 1.1300 + 0.2700i

Methods to Create and Destroy an MWNumericArray
In addition to the MWNumericArray constructor, you can use the newInstance
and newSparse methods to construct a numeric array. These two methods
offer better performance than using the class constructor. To destroy the
arrays, use either dispose or disposeArray, inherited from class MWArray.

Method Description

“newInstance”
on page 4-63

Constructs an array with the specified dimensions and
complexity.

“newSparse” on
page 4-66

Constructs a real sparse numeric matrix with the
specified number of rows and columns and maximum
nonzero elements, and initializes the array with the
supplied data.

“dispose” on
page 4-71

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-71

Frees all native MATLAB arrays contained in the input
object.

newInstance. This method constructs a real or complex array, specifying the
array dimensions, type, and complexity. This is a static method of the class
and thus does not need to be invoked in reference to an instance of the class.

Note This method offers better performance than using the class constructor.

4-63



4 Using MWArray Classes

To construct an uninitialized real or complex numeric array, use the following:

newInstance(int[] dims, MWClassID classid, MWComplexity cmplx)

To construct and initialize a real numeric array, use

newInstance(int[] dims, Object rData, MWClassID classid)

To construct and initialize a complex numeric array, use

newInstance(int[] dims, Object rData, Object iData,
MWClassID classid)

Input Parameters

dims

Array of nonnegative dimension sizes

classId

MWClassID representing the MATLAB type of the array

rData

Data to initialize the real part of the array. You must format the rData array
in column-wise order.

iData

Data to initialize the imaginary part of the array. You must format the iData
array in column-wise order.

Valid types for realData and imagData are as follows:

• double[]

• float[]

• long[]

• int[]

4-64



Using Class Methods

• short[]

• byte[]

• boolean[]

• One-dimensional arrays of any subclass of java.lang.Number

• One-dimensional arrays of java.lang.Boolean

Exceptions

The newInstance method throws the following exceptions:

NegativeArraySizeException

The specified dims parameter is negative.

ArrayStoreException

The array type is nonnumeric.

Example — Constructing a Numeric Array Object with newInstance

Construct a 3-by-6 real numeric array using the newInstance method. Note
that data in the Java array must be stored in column-wise order so that it will
be in the correct order in the final MWNumericArray object.

int[] dims = {3, 6};
double[] Adata = { 1, 7, 13,

2, 8, 14,
3, 9, 15,
4, 10, 16,
5, 11, 17,
6, 12, 18};

MWNumericArray A =
MWNumericArray.newInstance(dims, Adata, MWClassID.DOUBLE);

System.out.println("A = " + A);

4-65



4 Using MWArray Classes

When run, the example displays this output:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

newSparse. This method constructs a real or complex sparse
MWNumericArray, with the specified number of rows and columns and
maximum nonzero elements, and initializes the array with the supplied data.
This is a static method of the class and thus does not need to be invoked in
reference to an instance of the class.

Constructing a Sparse Matrix with No Nonzero Elements

To construct a sparse matrix with no nonzero elements, use

newSparse(int rows, int cols, int nzmax, MWClassID classid,
MWComplexity cmplx)

Constructing a Sparse Matrix of Real Numbers

To construct a real sparse array from an existing nonsparse two-dimensional
array, use

newSparse(Object realData, MWClassID classid)

To construct and initialize a new real sparse array, use

newSparse(int[] rowindex, int[] colindex, Object realData,
MWClassID classid)

To construct and initialize a new real sparse array, specifying its dimensions.
use

newSparse(int[] rowindex, int[] colindex, Object realData,
int rows, int cols, MWClassID classid)

To construct and initialize a new real sparse array, specifying its dimensions
and maximum number of nonzeros, use

4-66



Using Class Methods

newSparse(int[] rowindex, int[] colindex, Object realData,
int rows, int cols, int nzmax, MWClassID classid)

Constructing a Sparse Matrix of Complex Numbers

To construct a complex sparse array from an existing nonsparse
two-dimensional array, use

newSparse(Object realData, Object imagData, MWClassID classid)

To construct and initialize a new complex sparse array, use

newSparse(int[] rowindex, int[] colindex, Object realData,
Object imagData, MWClassID classid)

To construct and initialize a new complex sparse array, specifying its
dimensions, use

newSparse(int[] rowindex, int[] colindex, Object realData,
Object imagData, int rows, int cols, MWClassID classid)

To construct and initialize a new complex sparse array, specifying its
dimensions and maximum number of nonzeros, use

newSparse(int[] rowindex, int[] colindex, Object realData,
Object imagData, int rows, int cols, int nzmax,
MWClassID classid)

Input Parameters

realData and imagData

Data to initialize the real and imaginary parts of the array. See information
on valid data types below.

rowIndex and colIndex

Arrays of one-based row and column indices

4-67



4 Using MWArray Classes

Row and column index arrays are used to construct the sparse array such that
the following holds true, with space allocated for nzmax nonzeros:

S(rowIndex(k), columnIndex(k)) = realData(k) + imagData(k)*i

If you assign multiple values to a single rowIndex and colIndex pair, then
the element at that index is assigned the sum of these values.

rows and cols

Number of rows and columns in the matrix

nzmax

Maximum number of nonzero elements

classID

MWClassID representing the MATLAB type of the array. The only classID
currently supported is MWClassID.DOUBLE.

Valid types for the realData and imagData parameters are as follows:

• double[]

• float[]

• long[]

• int[]

• short[]

• byte[]

• boolean[]

• One-dimensional arrays of any subclass of java.lang.Number

• One-dimensional arrays of java.lang.Boolean

• One-dimensional arrays of java.lang.String

4-68



Using Class Methods

Exceptions

The newSparse method throws the following exceptions:

NegativeArraySizeException

Row or column size is negative.

IndexOutOfBoundsException

The specified index parameter is invalid.

ArrayStoreException

Incompatible array type or invalid array data

Example — Constructing a Sparse Array Object with newSparse

Creating a sparse complex MWNumericArray:

Construct a two-dimensional complex sparse MWNumericArray from the real
and imaginary double vectors:

double[][] rData = {{ 0, 0, 0, 16, 0},
{71, 63, 32, 0, 0}};

double[][] iData = {{ 0, 0, 0, 41, 0},
{ 0, 0, 32, 0, 2}};

MWNumericArray A =
MWNumericArray.newSparse(rData, iData, MWClassID.DOUBLE);

System.out.println("A = " + A.toString());

When run, the example displays this output:

A = (2,1) 71.0000
(2,2) 63.0000
(2,3) 32.0000 +32.0000i

4-69



4 Using MWArray Classes

(1,4) 16.0000 +41.0000i
(2,5) 0 + 2.0000i

Example — Using newSparse with Row and Column Indices

Construct a sparse MWNumericArray from vector Adata:

double[] Adata = { 0, 10, 0, 0, 40, 50, 60, 0, 0, 90};

int[] ri = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
int[] ci = {1, 2, 3, 4, 5, 1, 2, 3, 4, 5};

MWNumericArray A = MWNumericArray.newSparse(ri, ci,
Adata, MWClassID.DOUBLE);

System.out.println("A = " + A.toString());

When run, the example displays this output:

(2,1) 50
(1,2) 10
(2,2) 60
(1,5) 40
(2,5) 90

Example — Assigning Multiple Values to a Single Array Element

Create a sparse MWNumericArray using the rowindex and colindex
arguments, specifying multiple values for the array element at index (2, 5).
The result is that this element stores the sum of the values from Adata(1),
Adata(7), Adata(8), and Adata(9), which is equal to 250.

double[] Adata = { 0, 10, 0, 0, 40, 50, 60, 70, 80, 90};

int[] ri = {1, 2, 1, 1, 1, 2, 2, 2, 2, 2};
int[] ci = {1, 5, 2, 3, 5, 1, 2, 5, 5, 5};

MWNumericArray A =
MWNumericArray.newSparse(ri, ci, Adata, 4, 5,

MWClassID.DOUBLE);

4-70



Using Class Methods

System.out.println("A = " + A.toString());

When run, the example displays this output:

(2,1) 50
(2,2) 60
(1,5) 40
(2,5) 250

dispose. MWNumericArray inherits this method from the MWArray class.

disposeArray. MWNumericArray inherits this method from the MWArray
class.

Methods to Return Information About an MWNumericArray
Use these methods to return information about an object of class
MWNumericArray.

Method Description

“classID” on page 4-72 Returns the MATLAB type of this array.

“complexity” on page 4-72 Returns the complexity of this array.

“getDimensions” on page
4-72

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-72 Tests whether the array has no elements.

“isFinite” on page 4-72 Tests for finiteness in a machine-independent
manner.

“isInf” on page 4-73 Tests for infinity in a machine-independent
manner.

“isNaN” on page 4-74 Tests for NaN (not a number) in a
machine-independent manner.

“numberOfDimensions” on
page 4-75

Returns the number of dimensions of this
array.

“numberOfElements” on
page 4-75

Returns the total number of elements in this
array.

4-71



4 Using MWArray Classes

classID. MWNumericArray inherits this method from the MWArray class.

complexity. This method returns the complexity of the MWNumericArray
object as either MWComplexity.REAL for a real array, or MWComplexity.COMPLEX
for a complex array.

The prototype for the complexity method is

public MWComplexity complexity()

Input Parameters

None

Example — Testing for a Complex Array

Determine whether matrix A is real or complex:

double AReal = 24;
double AImag = 5;

MWNumericArray A = new MWNumericArray(AReal, AImag);
System.out.println("A is a " + A.complexity() + " matrix");

When run, the example displays this output:

A is a complex matrix

getDimensions. MWNumericArray inherits this method from the MWArray
class.

isEmpty. MWNumericArray inherits this method from the MWArray class.

isFinite. This method tests for finiteness in a machine-independent manner.
This is a static method of the class and does not need to be invoked in
reference to an instance of the class.

The prototype for the isFinite method is as follows:

public static boolean isFinite(double value)

4-72



Using Class Methods

Input Parameters

value

double value to test for finiteness

Example — Testing for Finite Array Values

Test x for finiteness:

double x = 25;

if (MWNumericArray.isFinite(x))
System.out.println("The input value is finite");

When run, the example displays this output:

The input value is finite

isInf. This method tests for infinity in a machine-independent manner. This
is a static method of the class and does not need to be invoked in reference
to an instance of the class.

The prototype for the isInf method is as follows:

public static boolean isInf(double value)

Input Parameters

value

double value to test for infinity

Example — Testing for Infinite Array Values

4-73



4 Using MWArray Classes

Test x for infinity:

double x = 1.0 / 0.0;

if (MWNumericArray.isInf(x))
System.out.println("The input value is infinite");

When run, the example displays this output:

The input value is infinite

isNaN. This method tests for NaN (Not a Number) in a machine-independent
manner. This is a static method of the class and does not need to be invoked
in reference to an instance of the class.

The prototype for the isNaN method is

public static boolean isNaN(double value)

Input Parameters

value

double value to test for NaN

Example — Testing for NaN Array Values

Test x for NaN:

double x = 0.0 / 0.0;

if (MWNumericArray.isNaN(x))
System.out.println("The input value is not a number.");

When run, the example displays this output:

The input value is not a number.

4-74



Using Class Methods

numberOfDimensions. MWNumericArray inherits this method from the
MWArray class.

numberOfElements. MWNumericArray inherits this method from the
MWArray class.

Methods to Get and Set the Real Parts of an MWNumericArray
Use these methods to get and set real values in an object of class
MWNumericArray.

Method Description

“get” on page
4-76

Returns the element at the specified offset as an Object.

“getData” on
page 4-76

Returns a one-dimensional array containing a copy of the
data in the underlying MATLAB array.

“getDouble”
on page 4-76

Returns the real part at the specified offset as a double
value.

“getFloat” on
page 4-77

Returns the real part at the specified offset as a float
value.

“getLong” on
page 4-77

Returns the real part at the specified offset as a long value.

“getInt” on
page 4-77

Returns the real part at the specified offset as an int value.

“getShort” on
page 4-77

Returns the real part at the specified offset as a short
value.

“getByte” on
page 4-78

Returns the real part at the specified offset as a byte value.

“set” on page
4-79

Replaces the real part at the specified offset with the
specified value.

“toArray” on
page 4-79

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

4-75



4 Using MWArray Classes

The following syntax applies to all the above methods except getData and
toArray.

Calling Syntax. To get the element at a specific index, use one of the
following:

public type getType(int index)
public type getType(int[] index)

To set the element at a specific index, use one of the following:

public void set(int index, type element)
public void set(int[] index, type element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWNumericArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions. The MWNumericArray constructor throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

get. MWNumericArray inherits this method from the MWArray class.

getData. MWNumericArray inherits this method from the MWArray class.

getDouble. This method returns the real part of the MWNumericArray
element located at the specified one-based index or index array. The return
value is given type double.

4-76



Using Class Methods

Use either of the following prototypes for the getDouble method, where index
can be of type int or int[]:

public double getDouble(int index)
public double getDouble(int[] index)

getFloat. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value
is given type float.

Use either of the following prototypes for the getFloat method, where index
can be of type int or int[]:

public float getFloat(int index)
public float getFloat(int[] index)

getLong. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value is
given type long.

Use either of the following prototypes for the getLong method, where index
can be of type int or int[]:

public long getLong(int index)
public long getLong(int[] index)

getInt. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value is
given type int.

Use either of the following prototypes for the getInt method, where index
can be of type int or int[]:

public int getInt(int index)
public int getInt(int[] index)

getShort. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value
is given type short.

4-77



4 Using MWArray Classes

Use either of the following prototypes for the getShort method, where index
can be of type int or int[]:

public short getShort(int index)
public short getShort(int[] index)

getByte. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value is
given type byte.

Use either of the following prototypes for the getByte method, where index
can be of type int or int[]:

public byte getByte(int index)
public byte getByte(int[] index)

Example — Getting a Short Value from a Numeric Array

The following examples use this array:

short[][] Adata = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8 , 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(Adata, MWClassID.INT16);
int[] index = {2, 4};
System.out.println("A(2,4) = " + A.getShort(index));

When run, the example displays this output:

A(2,4) = 10

Example — Using get and set on a Numeric Array

Given the same MWNumericArray used in the previous example, get and then
modify the value of element (2, 3):

int[] idx = {2, 3};

System.out.println("A(2, 3) is " + A.get(idx).toString());
System.out.println("");

4-78



Using Class Methods

System.out.println("Setting A(2, 3) to a new value ...");
A.set(idx, 555);
System.out.println("");

System.out.println("A(2, 3) is now " + A.get(idx).toString());

When run, the example displays this output:

A(2, 3) is 9.0

Setting A(2, 3) to a new value ...

A(2, 3) is now 555.0

set. MWNumericArray inherits the following methods from the MWArray class.

set(int index, type element)
set(int[] index, type element)

MWNumericArray also overloads set for primitive byte, short, int, long,
float, and double types.

toArray. MWNumericArray inherits this method from the MWArray class.

Methods to Get and Set the Imaginary Parts of an
MWNumericArray
Use these methods to get and set imaginary values in an object of class
MWNumericArray.

Method Description

“getImag” on page
4-81

Returns the imaginary part at the specified index
array in this array.

“getImagData” on
page 4-82

Returns a one-dimensional array containing a copy
of the imaginary data in the underlying MATLAB
array.

“getImagDouble” on
page 4-83

Returns the imaginary part at the specified offset
as a double value.

4-79



4 Using MWArray Classes

Method Description

“getImagFloat” on
page 4-84

Returns the imaginary part at the specified offset as
a float value.

“getImagLong” on
page 4-84

Returns the imaginary part at the specified offset
as a long value.

“getImagInt” on page
4-84

Returns the imaginary part at the specified offset as
an int value.

“getImagShort” on
page 4-84

Returns the imaginary part at the specified offset as
a short value.

“getImagByte” on
page 4-85

Returns the imaginary part at the specified offset
as a byte value.

“setImag” on page
4-85

Replaces the imaginary part at the specified index
array in this array with the specified double value.

“toImagArray” on
page 4-86

Returns an array containing a copy of the imaginary
data in the underlying MATLAB array. The
returned array has the same dimensionality as the
MATLAB array.

The following syntax applies to all the above methods except getImagData.

Calling Syntax. To get the element at a specific index, use one of the
following:

public type getImagType(int index)
public type getImagType(int[] index)

To set the element at a specific index, use one of the following:

public void setImag(int index, type element)
public void setImag(int[] index, type element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

4-80



Using Class Methods

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWNumericArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions. These methods throw the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

getImag. This method returns the imaginary part of the MWNumericArray
element located at the specified one-based index or index array. The type of
the return value is Object.

Use either of the following prototypes for the getImag method, where index
can be of type int or int[]:

public Object getImag(int index)
public Object getImag(int[] index)

Example — Getting the Real and Imaginary Parts of an Array

Start by creating a two-dimensional array of complex values:

double[][] Rdata = {{ 2, 3, 4},
{ 8 , 9, 10},
{14, 15, 16}};

double[][] Idata = {{ 6, 5, 14},
{ 7 , 1, 23},
{ 1, 1, 9}};

MWNumericArray A = new MWNumericArray(Rdata, Idata,
MWClassID.DOUBLE);

System.out.println("Complex matrix A =");

4-81



4 Using MWArray Classes

System.out.println(A.toString());

Here is the complex array that is displayed:

2.0000 + 6.0000i 3.0000 + 5.0000i 4.0000 + 14.0000i
8.0000 + 7.0000i 9.0000 + 1.0000i 10.0000 + 23.0000i

14.0000 + 1.0000i 15.0000 + 1.0000i 16.0000 + 9.0000i

Now, use get and getImag to read the real and imaginary parts of the element
at index (2, 3):

int[] index = {2, 3};
System.out.println("The real part of A(2,3) = " +

A.get(index));
System.out.println("The imaginary part of A(2,3) = " +

A.getImag(index));

When run, the example displays this output:

The real part of A(2,3) = 10.0
The imaginary part of A(2,3) = 23.0

getImagData. This method returns a one-dimensional MWNumericArray
containing a copy of the imaginary data in the underlying MATLAB array.

The prototype for the getImagData method is as follows:

public Object getImagData()

getImagData returns the array of elements in column-wise order. The
elements are converted according to default conversion rules.

Example — Getting Data from a Complex Array

Using the same array as in the example for “getImag” on page 4-81, get the
entire contents of the complex array:

int[] index = {2, 3};
double[] x;

4-82



Using Class Methods

System.out.println("The real data in matrix A is:");
x = (double[]) A.getData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + x[i]);
System.out.println();

System.out.println();

System.out.println("The imaginary data in matrix A is:");
x = (double[]) A.getImagData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + x[i]);
System.out.println();

When run, the example displays this output:

The real data in matrix A is:
2.0 8.0 14.0 3.0 9.0 15.0 4.0 10.0 16.0

The imaginary data in matrix A is:
6.0 7.0 1.0 5.0 1.0 1.0 14.0 23.0 9.0

getImagDouble. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type double.

Use either of the following prototypes for the getImagDouble method, where
index can be of type int or int[]:

public double getImagDouble(int index)
public double getImagDouble(int[] index)

Example — Getting Complex Data of a Specific Type

Using the same array as in the example for “getImag” on page 4-81, get the
real and imaginary parts of one element of the MWNumericArray:

int[] index = {2, 3};
System.out.println("The real part of A(2,3) = " +

A.getDouble(index));

4-83



4 Using MWArray Classes

System.out.println("The imaginary part of A(2,3) = " +
A.getImagDouble(index));

When run, the example displays this output:

The real part of A(2,3) = 10.0
The imaginary part of A(2,3) = 23.0

getImagFloat. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type float.

Use either of the following prototypes for the getImagFloat method, where
index can be of type int or int[]:

public float getImagFloat(int index)
public float getImagFloat(int[] index)

getImagLong. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type long.

Use either of the following prototypes for the getImagLong method, where
index can be of type int or int[]:

public long getImagLong(int index)
public long getImagLong(int[] index)

getImagInt. This method returns the imaginary part of the MWNumericArray
element located at the specified one-based index or index array. The return
value is given type int.

Use either of the following prototypes for the getImagInt method, where
index can be of type int or int[]:

public int getImagInt(int index)
public int getImagInt(int[] index)

getImagShort. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type short.

4-84



Using Class Methods

Use either of the following prototypes for the getImagShort method, where
index can be of type int or int[]:

public short getImagShort(int index)
public short getImagShort(int[] index)

getImagByte. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type byte.

Use either of the following prototypes for the getImagByte method, where
index can be of type int or int[]:

public byte getImagByte(int index)
public byte getImagByte(int[] index)

setImag. This method replaces the imaginary part at the specified one-based
index array in this array with the specified byte value.

Use either of the following prototypes for the setImag method, where index
can be of type int or int[]:

public void setImag(int index, javatype element)
public void setImag(int[] index, javatype element)

The type javatype can be any of the following:

• double

• float

• long

• int

• short

• byte

• Object

4-85



4 Using MWArray Classes

Exceptions

These methods throw the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

toImagArray. This method returns an array containing a copy of the
imaginary data in the underlying MATLAB array.

The prototype for the toImagArray method is

public Object toImagArray()

The array that is returned has the same dimensionality as the MATLAB array.
The elements of this array are converted according to default conversion rules.

Input Parameters

None

Example — Getting Complex Data with toImagArray

Using the same array as in the example for “getImag” on page 4-81, get and
display a copy of the imaginary part of that array:

double[][] x = (double[][]) A.toImagArray();
int[] dimA = A.getDimensions();

System.out.println("The imaginary part of matrix A is:");
for (int i = 0; i < dimA[0]; i++)

{
for (int j = 0; j < dimA[1]; j++)

System.out.print(" " + x[i][j]);
System.out.println();
}

4-86



Using Class Methods

When run, the example displays this output:

The imaginary part of matrix A is:
6.0 5.0 14.0
7.0 1.0 23.0
1.0 1.0 9.0

Methods to Copy, Convert, and Compare MWNumericArrays
Use these methods to copy, convert, and compare objects of class
MWNumericArray.

Method Description

“clone” on
page 4-87

Creates and returns a deep copy of this array.

“compareTo”
on page 4-88

Compares this array with the specified array for order.

“equals” on
page 4-89

Indicates whether some other array is equal to this one.

“hashcode” on
page 4-89

Returns a hash code value for the array.

“sharedCopy”
on page 4-89

Creates and returns a shared copy of this array.

“toString” on
page 4-89

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWNumericArray overrides the clone method of class
MWArray.

The prototype for the clone method is

public Object clone()

4-87



4 Using MWArray Classes

Input Parameters

None

Exceptions

The clone method throws the following exception:

java.lang.CloneNotSupportedException

The object’s class does not implement the Cloneable interface.

Example — Cloning a Numeric Array Object

Create a 3-by-6 array of type double:

double[][] AData = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8 , 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(AData, MWClassID.DOUBLE);

Create a clone of the MWNumericArray object A:

Object C = A.clone();

System.out.println("Clone of matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

compareTo. MWNumericArray inherits this method from the MWArray class.

4-88



Using Class Methods

equals. MWNumericArray inherits this method from the MWArray class.

hashcode. MWNumericArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWNumericArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWNumericArray overrides the sharedCopy
method of class MWArray.

The prototype for the sharedCopy method is as follows:

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of a Numeric Array Object

Create a shared copy of MWArray object A:

Object S = A.sharedCopy();

System.out.println("Shared copy of matrix A is:");
System.out.println(S.toString());

When run, the example displays this output:

Shared copy of matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

toString. MWNumericArray inherits this method from the MWArray class.

4-89



4 Using MWArray Classes

Methods to Use on Sparse MWNumericArrays
Use these methods to return information on sparse arrays of type
MWNumericArray. All are inherited from class MWArray.

Operations on sparse arrays of type MWNumericArray are currently supported
only for the double type.

Method Description

“newSparse” on page 4-66 Constructs a real sparse numeric matrix with
the specified number of rows and columns and
maximum nonzero elements, and initializes the
array with the supplied data.

“isSparse” on page 4-55 Tests whether the array is sparse.

“columnIndex” on page
4-56

Returns an array containing the column index
of each nonzero element in the underlying
MATLAB array.

“rowIndex” on page 4-57 Returns an array containing the row index
of each nonzero element in the underlying
MATLAB array.

“maximumNonZeros” on
page 4-57

Returns the allocated capacity of a sparse
array. If the underlying array is nonsparse,
this method returns the same value as
numberOfElements().

“numberOfNonZeros” on
page 4-58

Returns the number of nonzero elements in
a sparse array. If the underlying array is
nonsparse, this method returns the same value
as numberOfElements().

MWNumericArray inherits all the above methods from the MWArray class.

Methods to Return Special Constant Values
Use these methods to return the values symbolized by EPS, Inf, and NaN
in MATLAB.

4-90



Using Class Methods

Method Description

“getEps” on
page 4-91

Get the value represented by EPS (floating-point relative
accuracy) in MATLAB.

“getInf” on page
4-91

Get the value represented by INF (infinity) in MATLAB.

“getNaN” on
page 4-92

Get the value represented by NaN (Not a Number) in
MATLAB.

getEps. This method returns the MATLAB concept of EPS, which stands for
the floating-point relative accuracy.

The prototype for the getEps method is

public static double getEps()

Input Parameters

None

Exceptions

None

getInf. This method returns the MATLAB concept of Inf, which stands for
infinity.

The prototype for the getInf method is

public static double getInf()

Input Parameters

None

4-91



4 Using MWArray Classes

Exceptions

None

getNaN. This method returns the MATLAB concept of NaN, which stands
for "Not a Number".

The prototype for the getNaN method is

public static double getNaN()

Input Parameters

None

Exceptions

None

Using MWLogicalArray
This section covers the following topics:

• “Constructing an MWLogicalArray” on page 4-92

• “Methods to Create and Destroy an MWLogicalArray” on page 4-93

• “Methods to Return Information About an MWLogicalArray” on page 4-98

• “Methods to Get and Set Data in an MWLogicalArray” on page 4-100

• “Methods to Copy, Convert, and Compare MWLogicalArrays” on page 4-104

• “Methods to Use on Sparse MWLogicalArrays” on page 4-107

Constructing an MWLogicalArray
You can construct two types of MWLogicalArray objects – an empty logical
scalar or an initialized logical scalar or array.

Constructing an Empty Logical Scalar. To construct an empty scalar
logical of type MWClassID.LOGICAL, use

4-92



Using Class Methods

MWLogicalArray()

Constructing an Initialized Logical Scalar or Array. Use this constructor
syntax to create a MWLogicalArray scalar or array that represents the
primitive Java type javatype:

MWLogicalArray(javatype array)

The value of array is set to true if the argument is nonzero, and false
otherwise.

The type javatype can be any of the following:

• double

• float

• long

• int

• short

• byte

• boolean

• Object

Example — Constructing an Initialized Logical Array Object

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

Methods to Create and Destroy an MWLogicalArray
In addition to the MWLogicalArray constructor, you can use the newInstance
and newSparse methods to construct a logical array. These two methods offer
better performance than using the class constructor. To destroy the arrays,
use either dispose or disposeArray.

4-93



4 Using MWArray Classes

Method Description

“newInstance” on
page 4-94

Constructs a logical array with the specified
dimensions.

“newSparse” on
page 4-95

Constructs a sparse logical matrix from the supplied
full matrix.

“dispose” on page
4-98

Frees the native MATLAB array contained by this
array.

“disposeArray” on
page 4-98

Frees all native MATLAB arrays contained in the
input object.

newInstance. This method constructs a real or complex array, specifying the
array dimensions, type, and complexity. This is a static method of the class
and thus does not need to be invoked in reference to an instance of the class.

Note This method offers better performance than using the class constructor.

To construct a logical array with specified dimensions and all elements
initialized to false, use the following:

public static MWLogicalArray newInstance(int[] dims)

To construct a logical array with specified dimensions and initialized to the
supplied data, use the following:

public static MWLogicalArray newInstance(int[] dims,
Object data)

Input Parameters

dims

Array of nonnegative dimension sizes

data

Data to initialize the array

4-94



Using Class Methods

Exceptions

The newInstance method throws the following exceptions:

NegativeArraySizeException

The specified dims parameter is negative.

ArrayStoreException

The specified data is nonnumeric or non-Boolean.

Example — Constructing a Logical Array Object with newInstance

Construct a 1-by-5 logical array using the newInstance method. Note that
data in the Java array must be stored in a column-wise order so that it will be
in row-wise order in the final MWLogicalArray object.

boolean[] Adata = { true, true, false, false, true};
int[] dims = {1, 5};

MWLogicalArray A = MWLogicalArray.newInstance(dims, Adata);
System.out.println("Array A: " + A.toString());

When run, the example displays this output:

Array A: 1 1 0 0 1

newSparse. This method constructs a sparse MWLogicalArray with the
specified number of rows and columns and maximum nonzero elements, and
initializes the array with the supplied data. This is a static method of the class
and thus does not need to be invoked in reference to an instance of the class.

Supported Prototypes

Supported prototypes for newSparse are as follows. All input parameters
shown here are described under Input Parameters on page 96. Any
parameters not specified are given their default values.

4-95



4 Using MWArray Classes

To construct a sparse logical matrix with no nonzero elements, use the
following:

public static MWLogicalArray newSparse(int rows, int cols,
int nzmax)

To construct a sparse logical matrix from a supplied full matrix, use the
following:

public static MWLogicalArray newSparse(Object data)

To specify what data is assigned to each element, use the following:

public static MWLogicalArray newSparse(int[] rowindex,
int[] colindex, Object data)

To specify the number of rows and columns in the array, use the following:

public static MWLogicalArray newSparse(int[] rowindex,
int[] colindex, Object data, int rows, int cols)

To specify the maximum number of nonzero elements in the array, use the
following:

public static MWLogicalArray newSparse(int[] rowindex,
int[] colindex, Object data, int rows, int cols,
int nzmax)

Input Parameters

data

Data to initialize the array. See the list of valid data types below.

rowIndex and colIndex

Arrays of one-based row and column indices

Row and column index arrays are used to construct the sparse array such that
the following holds true, with space allocated for nzmax nonzeros:

4-96



Using Class Methods

S(rowIndex(k), colIndex(k)) = data(k)

rows and cols

Number of rows and columns in the matrix

nzmax

Maximum number of nonzero elements

Valid types for the data parameter are as follows:

• double[]

• float[]

• long[]

• int[]

• short[]

• byte[]

• boolean[]

• One-dimensional arrays of any subclass of java.lang.Number

• One-dimensional arrays of java.lang.Boolean

• One-dimensional arrays of java.lang.String

rowIndex and colIndex Parameters

Exceptions

The newSparse method throws the following exceptions:

NegativeArraySizeException

Row or column size is negative.

IndexOutOfBoundsException

4-97



4 Using MWArray Classes

The specified index parameter is invalid.

ArrayStoreException

Incompatible array type or invalid array data

Example — Constructing a Sparse Logical Array Object

Create a sparse array of logical values using the newSparse method:

boolean[] Adata = {true, true, false, false, true};

int[] ri = {1, 1, 1, 1, 1};
int[] ci = {1, 2, 3, 4, 5};

MWLogicalArray A = MWLogicalArray.newSparse(ri, ci, Adata);

System.out.println(A.toString());

When run, the example displays this output:

(1,1) 1
(1,2) 1
(1,5) 1

dispose. MWLogicalArray inherits this method from the MWArray class.

disposeArray. MWLogicalArray inherits this method from the MWArray
class.

Methods to Return Information About an MWLogicalArray
Use these methods to return information about an object of class
MWLogicalArray.

Method Description

“classID” on page 4-99 Returns the MATLAB type of this array.

4-98



Using Class Methods

Method Description

“getDimensions” on page
4-100

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-100 Tests whether the array has no elements.

“numberOfDimensions” on
page 4-100

Returns the number of dimensions of this
array.

“numberOfElements” on
page 4-100

Returns the total number of elements in this
array.

classID. This method returns the MATLAB type of the MWLogicalArray
object. The classID method of MWLogicalArray overrides the classID
method of class MWArray.

The prototype for the classID method is

public MWClassID classID()

classID returns a field defined by the MWClassID class. For an
MWLogicalArray, classID returns the value MWClassID.LOGICAL.

Input Parameters

None

Example — Getting the Class ID for a Logical Array Object

Return the class ID for MWLogicalArray object Adata:

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

System.out.println("Class of A is " + A.classID());

4-99



4 Using MWArray Classes

When run, the example displays this output:

Class of A is logical

getDimensions. MWLogicalArray inherits this method from the MWArray
class.

isEmpty. MWLogicalArray inherits this method from the MWArray class.

numberOfDimensions. MWLogicalArray inherits this method from the
MWArray class.

numberOfElements. MWLogicalArray inherits this method from the
MWArray class.

Methods to Get and Set Data in an MWLogicalArray
Use these methods to get and set values in an object of class MWLogicalArray.

Method Description

“get” on page
4-100

Returns the element at the specified offset as an Object.

“getData” on
page 4-100

Returns a one-dimensional array containing a copy of
the data in the underlying MATLAB array.

“getBoolean” on
page 4-101

Returns the boolean at the specified one-based offset.

“set” on page
4-102

Replaces the element at the specified one-based offset in
this array with the specified element.

“toArray” on
page 4-104

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

get. MWLogicalArray inherits this method from the MWArray class.

getData. MWLogicalArray inherits this method from the MWArray class.

4-100



Using Class Methods

getBoolean. This method returns the element located at the specified
one-based index of the MWLogicalArray object.

To get the element at a specific index, use one of the following:

public boolean getBoolean(int index)
public boolean getBoolean(int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWLogicalArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWLogicalArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The getBoolean method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-101



4 Using MWArray Classes

Example — Getting a Boolean Value from a Logical Array

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

int[] index = {2, 2};
System.out.println("A(2,2) is " + A.getBoolean(index));

When run, the example displays this output:

A(2,2) = true

set. This method returns the element located at the specified one-based index
of the MWLogicalArray object.

To set the element at a specific index, use one of the following:

public void set(int index, boolean element)
public void set(int[] index, boolean element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

index

Index of the requested element in the MWLogicalArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

4-102



Using Class Methods

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWLogicalArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting a Value in a Logical Array

Get and modify the value at A(2,3):

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

int[] index = {2, 3};
Object d_out = A.get(index);
System.out.println("Array element A(2,3) is " +

d_out.toString() + "\n");

System.out.println("Setting A(2,3) to true\n");
A.set(index, true);

d_out = A.get(index);
System.out.println("Array element A(2,3) is " +

d_out.toString() + "\n");

When run, the example displays this output:

Array element A(2,3) is false

4-103



4 Using MWArray Classes

Setting A(2,3) to true

Array element A(2,3) is true

toArray. MWLogicalArray inherits this method from the MWArray class.

Methods to Copy, Convert, and Compare MWLogicalArrays
Use these methods to copy, convert, and compare objects of class
MWLogicalArray.

Method Description

“clone” on
page 4-104

Creates and returns a deep copy of this array.

“compareTo”
on page
4-105

Compares this array with the specified array for order.

“equals” on
page 4-105

Indicates whether some other array is equal to this one.

“hashCode”
on page
4-106

Returns a hash code value for the array.

“sharedCopy”
on page
4-106

Creates and returns a shared copy of this array.

“toString” on
page 4-106

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWLogicalArray overrides the clone method of class
MWArray.

The prototype for the clone method is

4-104



Using Class Methods

public Object clone()

Input Parameters

None

Exceptions

The clone method throws the following exception:

java.lang.CloneNotSupportedException

The object’s class does not implement the Cloneable interface.

Example — Cloning a Logical Array Object

Create a clone of MWLogicalArray object A:

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

Object C = A.clone();

System.out.println("Clone of logical matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of logical matrix A is:
1 0 0
0 1 0

compareTo. MWLogicalArray inherits this method from the MWArray class.

equals. MWLogicalArray inherits this method from the MWArray class.

4-105



4 Using MWArray Classes

hashCode. MWLogicalArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWLogicalArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWLogicalArray overrides the sharedCopy
method of class MWArray.

The prototype for the sharedCopy method is

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of a Logical Array Object

Create a shared copy of MWLogicalArray object A:

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

Object C = A.sharedCopy();

System.out.println("Shared copy of logical matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Shared copy of logical matrix A is:
1 0 0
0 1 0

toString. MWLogicalArray inherits this method from the MWArray class.

4-106



Using Class Methods

Methods to Use on Sparse MWLogicalArrays
Use these methods to return information on sparse arrays of type
MWLogicalArray. All are inherited from class MWArray.

Method Description

“isSparse” on page
4-55

Tests whether the array is sparse.

“columnIndex” on page
4-56

Returns an array containing the column index of
each nonzero element in the underlying MATLAB
array.

“rowIndex” on page
4-57

Returns an array containing the row index of each
nonzero element in the underlying MATLAB array.

“maximumNonZeros”
on page 4-57

Returns the allocated capacity of a sparse array.
If the underlying array is nonsparse, this method
returns the same value as numberOfElements().

“numberOfNonZeros”
on page 4-58

Returns the number of nonzero elements in
a sparse array. If the underlying array is
nonsparse, this method returns the same value as
numberOfElements().

MWLogicalArray inherits all the above methods from the MWArray class.

Using MWCharArray
This section covers the following topics:

• “Constructing an MWCharArray” on page 4-108

• “Methods to Create and Destroy an MWCharArray” on page 4-109

• “Methods to Return Information About an MWCharArray” on page 4-111

• “Methods to Get and Set Data in the MWCharArray” on page 4-112

• “Methods to Copy, Convert, and Compare MWCharArrays” on page 4-116

4-107



4 Using MWArray Classes

Constructing an MWCharArray
Use the tables in this section to construct an MWCharArray from a particular
Java data type. See the examples in this section for more help.

Constructing an Empty Character Array. To construct an empty
MWCharArray, use

MWCharArray()

To construct a MWCharArray object from a primitive Java char scalar, use
the following prototype:

MWCharArray(char value)

To construct a MWCharArray object from a Java Object, use

MWCharArray(Object value)

Input Parameters

value

Value to initialize the array

Valid argument types for value are as follows:

• N-dimensional primitive char arrays

• java.lang.String

• N-dimensional arrays of java.lang.String

• java.lang.Character

• N-dimensional arrays of java.lang.Character

Example — Constructing an Initialized Character Array Object

Construct one MWCharArray object from a primitive character array:

char[] chArray1 = {'H', 'e', 'l', 'l', 'o'};

4-108



Using Class Methods

char[] chArray2 = {'W', 'o', 'r', 'l', 'd'};
MWCharArray A = new MWCharArray(chArray1);

System.out.println("The string in MWCharArray1 is \"" + A + "\"");

Construct a second MWCharArray from a String object:

String str = new String(chArray2);
MWCharArray A2 = new MWCharArray(str);

System.out.println("The string in MWCharArray2 is \"" +
A2 + "\"");

When run, the example displays this output:

The string in MWCharArray1 is "Hello"

The string in MWCharArray2 is "World"

Methods to Create and Destroy an MWCharArray
In addition to the MWCharArray constructor, you can use the newInstance
method to construct a character array. This method offers better performance
than using the class constructor. To destroy the array, use either dispose
or disposeArray.

Method Description

“newInstance”
on page 4-109

Constructs a char array with the specified dimensions.

“dispose” on
page 4-110

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-111

Frees all native MATLAB arrays contained in the input
object.

newInstance. This method constructs a char array with the specified
dimensions and initializes the array with the supplied data. The input array
must be of type char[] or java.lang.String. The characters in the array
are assumed to be stored in column-major order.

4-109



4 Using MWArray Classes

To construct a MWCharArray object with the specified dimensions, use

public static MWCharArray newInstance(int[] dims)

The elements of the array are all initialized to zero.

To construct a MWCharArray object with the specified dimensions and
initialized with the supplied data, use

public static MWCharArray newInstance(int[] dims,
Object data)

Input Parameters

dims

Array of dimension sizes. Each dimension size must be nonnegative.

data

Data to initialize the array

Example — Constructing a Character Array Object with newInstance

Create an MWCharArray object containing the text Hello:

int[] dims = {1, 5};
char[] chArray = {'H', 'e', 'l', 'l', 'o'};
String str = new String(chArray);

MWCharArray A =
MWCharArray.newInstance(dims, str);

System.out.println("The array string is \"" + A + "\"");

When run, the example displays this output:

The array string is "Hello"

dispose. MWCharArray inherits this method from the MWArray class.

4-110



Using Class Methods

disposeArray. MWCharArray inherits this method from the MWArray class.

Methods to Return Information About an MWCharArray
Use these methods to return information about an object of class MWCharArray.

Method Description

“classID” on page 4-111 Returns the MATLAB type of this array.

“getDimensions” on
page 4-112

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page
4-112

Tests whether the array has no elements.

“numberOfDimensions”
on page 4-112

Returns the number of dimensions of this array.

“numberOfElements”
on page 4-112

Returns the total number of elements in this
array.

classID. This method returns the MATLAB type of the MWCharArray object.
The classID method of MWCharArray overrides the classID method of class
MWArray.

The prototype for the classID method is

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of a Character Array

Create an MWCharArray object and then display the class ID:

char[] chArray1 = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray1);

System.out.println("The class of A is " + A.classID());

4-111



4 Using MWArray Classes

When run, the example displays this output:

The class of A is char

getDimensions. MWCharArray inherits this method from the MWArray class.

isEmpty. MWCharArray inherits this method from the MWArray class.

numberOfDimensions. MWCharArray inherits this method from the
MWArray class.

numberOfElements. MWCharArray inherits this method from the MWArray
class.

Methods to Get and Set Data in the MWCharArray
Use these methods to get and set values in an object of class MWCharArray.

Method Description

“get” on page
4-112

Returns the element at the specified offset as an
Object.

“getData” on page
4-112

Returns a one-dimensional array containing a copy of
the data in the underlying MATLAB array.

“getChar” on page
4-113

Returns the character at the specified one-based offset.

“set” on page
4-114

Replaces the element at the specified one-based offset
in this array with the specified element.

“toArray” on page
4-116

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

get. MWCharArray inherits this method from the MWArray class.

getData. MWCharArray inherits this method from the MWArray class.

4-112



Using Class Methods

getChar. This method returns the character located at the specified
one-based index of the MWCharArray object.

To get the element at a specific index, use one of

public char getChar(int index)
public char getChar(int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWCharArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCharArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The getChar method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-113



4 Using MWArray Classes

Example — Getting Character Array Data with getChar

Use getChar to display the string stored in MWCharArray object A:

char[] chArray = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray);

for (int i = 1; i <= 5; i++)
System.out.print(A.getChar(i));

When run, the example displays this output:

Hello

set. This method replaces the character located at the specified one-based
offset in the MWCharArray object with the specified char value.

To set the element at a specific index, use one of

public void set(int index, char element);
public void set(int[] index, char element);

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

index

Index of the requested element in the MWCharArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

4-114



Using Class Methods

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCharArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting Values in a Character Array

Display a phrase stored in MWCharArray object A, change one of the characters,
and then display the modified phrase:

char[] chArray = {'G', 'a', 'r', 'y'};
MWCharArray A = new MWCharArray(chArray);

System.out.println(" I think " + A + " lives here." + "\n");

System.out.println("Changing the first character to M ...\n");
int[] index = {1, 1};
A.set(index, 'M');

System.out.println(" I think " + A + " lives here." + "\n");

When run, the example displays this output:

I think Gary lives here.

Changing the first character to M ...

I think Mary lives here.

4-115



4 Using MWArray Classes

toArray. MWCharArray inherits this method from the MWArray class.

Methods to Copy, Convert, and Compare MWCharArrays
Use these methods to copy, convert, and compare objects of class MWCharArray.

Method Description

“clone” on page
4-116

Creates and returns a deep copy of this array.

“compareTo” on
page 4-117

Compares this array with the specified array for order.

“equals” on page
4-117

Indicates whether some other array is equal to this one.

“hashCode” on
page 4-117

Returns a hash code value for the array.

“sharedCopy” on
page 4-117

Creates and returns a shared copy of this array.

“toString” on page
4-118

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWCharArray overrides the clone method of class
MWArray.

The prototype for the clone method is

public Object clone()

Input Parameters

None

4-116



Using Class Methods

Example — Cloning a Character Array Object

Create a clone of MWCharArray object A:

char[] chArray = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray);

Object C = A.clone();

System.out.println("Clone of matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of matrix A is:
Hello

compareTo. MWCharArray inherits this method from the MWArray class.

equals. MWCharArray inherits this method from the MWArray class.

hashCode. MWCharArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWCharArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWCharArray overrides the sharedCopy method
of class MWArray.

The prototype for the sharedCopy method is

public Object sharedCopy();

Input Parameters

None

4-117



4 Using MWArray Classes

Example — Making a Shared Copy of a Character Array Object

Create a shared copy of MWCharArray object A:

char[] chArray = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray);

Object S = A.sharedCopy();

System.out.print("Shared copy of matrix A is \"" +
S.toString() + "\"");

When run, the example displays this output:

Shared copy of matrix A is "Hello"

toString. MWCharArray inherits this method from the MWArray class.

Using MWStructArray
This section covers the following topics:

• “Constructing an MWStructArray” on page 4-118

• “Methods to Destroy an MWStructArray” on page 4-120

• “Methods to Return Information About an MWStructArray” on page 4-121

• “Methods to Get and Set Data in the MWStructArray” on page 4-124

• “Methods to Copy, Convert, and Compare MWStructArrays” on page 4-132

Constructing an MWStructArray
Use the tables in this section to construct an MWStructArray from a particular
Java data type. See the examples at the end of this section for more help.

Constructing an Empty Structure Array. To construct an empty 0-by-0
MATLAB structure array, use

MWStructArray()

4-118



Using Class Methods

To construct an MWStructArray object with the specified dimensions and
field names, use

MWStructArray(int[] dims, java.lang.String[] fieldnames)

To construct an MWStructArray object with the specified number of rows
and columns, and field names, use

MWStructArray(int rows, int cols, java.lang.String[] fieldnames)

Input Parameters

dims

Array of dimension sizes. Each dimension size must be nonnegative.

fieldnames

Array of field names

rows

Number of rows in the array. This number must be nonnegative.

cols

Number of columns in the array. This number must be nonnegative.

Example — Constructing a Structure Array Object

This first example creates a 0-by-0 MWStructArray object:

MWStructArray S = new MWStructArray();
System.out.println("Structure array S: " + S);

When run, the example displays this output:

Structure array S: []

4-119



4 Using MWArray Classes

The second example creates a 1-by-2 MWStructArray object with fields f1,
f2, and f3:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};

MWStructArray S = new MWStructArray(sdims, sfields);

System.out.println("Structure array S: " + S);

When run, the example displays this output:

Structure array S: 1x2 struct array with fields:
f1
f2
f3

Methods to Destroy an MWStructArray
To destroy the arrays, use either dispose or disposeArray.

Method Description

“dispose” on
page 4-120

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-121

Frees all native MATLAB arrays contained in the input
object.

dispose. The dispose method of MWStructArray overrides the dispose
method of class MWArray.

The prototype for the dispose method is

public void dispose()

Input Parameters

None

4-120



Using Class Methods

Example — Disposing of a Structure Array Object

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};

MWStructArray S = new MWStructArray(sdims, sfields);

System.out.println("Structure array S: " + S);
System.out.println("Now disposing of array S\n");
S.dispose();

System.out.println("Structure array S: " + S);

When run, the example displays this output:

Structure array S: 1x2 struct array with fields:
f1
f2
f3

Now disposing of array S

Structure array S: []

disposeArray. MWStructArray inherits this method from the MWArray class.

Methods to Return Information About an MWStructArray
Use these methods to return information about an object of class
MWStructArray.

Method Description

“classID” on page 4-122 Returns the MATLAB type of this array.

“fieldNames” on page
4-122

Returns the field names in this array.

“getDimensions” on page
4-123

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-123 Tests whether the array has no elements.

4-121



4 Using MWArray Classes

Method Description

“numberOfDimensions” on
page 4-123

Returns the number of dimensions of this
array.

“numberOfElements” on
page 4-123

Returns the total number of elements in this
array.

“numberOfFields” on page
4-123

Returns the number of fields in this array.

classID. This method returns the MATLAB type of this array. The classID
method of MWStructArray overrides the classID method of class MWArray.

The prototype for the classID method is

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of a Structure Array

Create an MWStructArray object and display the class ID:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};

MWStructArray S = new MWStructArray(sdims, sfields);

System.out.println("The class of S is " + S.classID());

When run, the example displays this output:

The class of S is struct

fieldNames. This method returns the field names in this array.

The prototype for the fieldNames method is

4-122



Using Class Methods

public java.lang.String[] fieldNames()

Input Parameters

None

Example — Getting the Field Names of a Structure Array

Create an MWStructArray object with three fields and display the field names:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

String[] str = S.fieldNames();

System.out.print("The structure has the fields: ");
for (int i=0; i<S.numberOfFields(); i++)

System.out.print(" " + str[i]);

When run, the example displays this output:

The structure has the fields: f1 f2 f3

getDimensions. MWStructArray inherits this method from the MWArray
class.

isEmpty. MWStructArray inherits this method from the MWArray class.

numberOfDimensions. MWStructArray inherits this method from the
MWArray class.

numberOfElements. MWStructArray inherits this method from the MWArray
class.

numberOfFields. This method returns the number of fields in this array.

The prototype for the numberOfFields method is

4-123



4 Using MWArray Classes

public int numberOfFields()

Input Parameters

None

Example — Getting the Number of Fields in a Structure Array

Create an MWStructArray object with three fields and display the number
of fields:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

String[] str = S.fieldNames();

System.out.println("There are " + S.numberOfFields() +
" fields in this structure.");

When run, the example displays this output:

There are 3 fields in this structure.

Methods to Get and Set Data in the MWStructArray
Use these methods to get and set values in an object of class MWStructArray.

Method Description

“get” on
page 4-125

Returns the element at the specified offset as an Object.

“getData”
on page
4-127

Returns a one-dimensional array containing a copy of the data
in the underlying MATLAB array.

4-124



Using Class Methods

Method Description

“getField”
on page
4-128

Returns a shared copy of the element at the specified one-based
offset and field name in this array as an MWArray instance.

“set” on
page 4-129

Replaces the element at the specified one-based offset in this
array with the specified element.

“toArray”
on page
4-131

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the same
dimensionality as the MATLAB array.

get. This method returns the element at the specified one-based offset in
this array. The returned element is converted to a Java array using default
conversion rules.

To get the element at a specific index, use one of the following. Calling this
method is equivalent to calling getField(index).toArray().

public Object get(int index)
public Object get(int[] index)

To get the element at a specific index and structure field, use one of the
following. Calling this method is equivalent to calling getField(fieldname,
index).toArray().

public Object get(String fieldname, int index)
public Object get(String fieldname, int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

fieldname

Field name of the requested element

4-125



4 Using MWArray Classes

index

Index of the requested element in the MWStructArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWStructArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Getting Structure Array Data with get

Get the data stored in field f2 at index (1,1) of MWStructArray object S:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
Integer val = new Integer(555);

MWStructArray S = new MWStructArray(sdims, sfields);

int[] index = {1, 1};
S.set(sfields[2], index, val);

Object d_out = S.get(sfields[2], index);
System.out.println("Structure data S(1,1).f2 is " +

d_out.toString());

When run, the example displays this output:

4-126



Using Class Methods

Structure data S(1,1).f2 is 555

getData. This method returns a one-dimensional array containing a copy
of the data in the underlying MATLAB array. The getData method of
MWStructArray overrides the getData method of class MWArray.

The prototype for the getData method is

public Object getData()

getData returns a one-dimensional array of elements stored in column-wise
order. Before converting, a new array is derived by transforming the struct
array into a cell array such that an N-by-M-by-... struct array with P fields
is transformed into a P-by-N-by-M-by-... cell array. Each element in the
returned array is converted to a Java array when you call MWArray.toArray()
on the corresponding cell.

Input Parameters

None

Example — Getting Structure Array Data with getData

Get the data stored in all fields and indices of MWStructArray object S:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

int count = S.numberOfElements() * S.numberOfFields();

// Initialize the structure.
Integer[] val = new Integer[6];
for (int i = 0; i < count; i++)

val[i] = new Integer((i+1) * 15);

// Use getData to get data from the structure.
System.out.println("Data read from structure array S: \n");

4-127



4 Using MWArray Classes

MWArray[] x = (MWArray[]) S.getData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + x[i]);

When run, the example displays this output:

Data read from structure array S:

15
30
45
60
75
90

getField. This method returns a shared copy of the element at the specified
one-based index array and field name in this array as an MWArray instance.

To get the element at a specific index, use one of

public MWArray getField(int index)
public MWArray getField(int[] index)

To get the element at a specific index and structure field, use one of

public MWArray getField(String fieldname, int index)
public MWArray getField(String fieldname, int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Dispose of the returned MWArray reference by calling MWArray.dispose().

Input Parameters

fieldname

4-128



Using Class Methods

Field name of the requested element

index

Index of the requested element in the MWStructArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWStructArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid

set. This method returns the element at the specified one-based offset in
this array. The set method of MWStructArray overrides the set method of
class MWArray.

To set the element at a specific index, use one of

public void set(int index, Object element)
public void set(int[] index, Object element)

To set the element at a specific index and structure field, use one of

public void set(String fieldname, int index, Object element)
public void set(String fieldname, int[] index, Object element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the

4-129



4 Using MWArray Classes

second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

fieldname

Field name of the requested element

index

Index of the requested element in the MWStructArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWStructArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

element

New element to replace at index

If element is of type MWArray, the cell at index is set to a shared copy of the
underlying MATLAB array. Otherwise, a new MATLAB array is created from
element using default conversion rules and assigned to the cell at index.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-130



Using Class Methods

Example — Setting Values in a Structure Array

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

Integer[] val = new Integer[25];
for (int i = 0; i < 6; i++)

val[i] = new Integer(i * 15);

for (int i = 0; i < 2; i++)
for (int j = 0; j < sfields.length; j++)

S.set(sfields[j], i+1, val[j + (i * 3)]);

// Use getData to get data from the structure.
System.out.println("Data read from structure array S: \n");
Object[] x = (Object[]) S.getData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + ((int[][]) x[i])[0][0]);

When run, the example displays this output:

Data read from structure array S:

0 15 30 45 60 75

toArray. This method returns an array containing a copy of the data in the
underlying MATLAB array.

The prototype for the toArray method is

public Object[] toArray()

toArray returns an array with the same dimensionality as the MATLAB
array. Before converting, a new array is derived by transforming the struct
array into a cell array such that an N-by-M-by-... struct array with P fields
is transformed into a P-by-N-by-M-by-... cell array. Each element in the
returned array is converted to a Java array when you call MWArray.toArray()
on the corresponding cell.

4-131



4 Using MWArray Classes

Input Parameters

None

Example — Getting Structure Array Data with toArray

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

Integer[] val = new Integer[25];
for (int i = 0; i < 6; i++)

val[i] = new Integer(i * 15);

for (int i = 0; i < 2; i++)
for (int j = 0; j < sfields.length; j++)

S.set(sfields[j], i+1, val[j + (i * 3)]);

Object[][][] x = (Object[][][]) S.toArray();
System.out.println();

System.out.println("Data read from structure array S \n");
for (int j = 0; j < 2; j++)

for (int i = 0; i < x.length; i++)
System.out.print(" " + ((int[][]) x[i][0][j])[0][0]);

When run, the example displays this output:

Data read from structure array S

0 15 30 45 60 75

Methods to Copy, Convert, and Compare MWStructArrays
Use these methods to copy, convert, and compare objects of class
MWStructArray.

4-132



Using Class Methods

Method Description

“clone” on page
4-133

Creates and returns a deep copy of this array.

“compareTo”
on page 4-134

Compares this array with the specified array for order.

“equals” on
page 4-134

Indicates whether some other array is equal to this one.

“hashCode” on
page 4-134

Returns a hash code value for the array.

“sharedCopy”
on page 4-134

Creates and returns a shared copy of this array.

“toString” on
page 4-135

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWStructArray overrides the clone method of class
MWArray.

The prototype for the clone method is

public Object clone()

Input Parameters

None

Exceptions

The clone method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-133



4 Using MWArray Classes

Example — Cloning a Structure Array Object

Create an MWStructArray object and then a clone of that object:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

Object C = S.clone();

System.out.println("Clone of structure S is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of structure S is:
1x2 struct array with fields:

f1
f2
f3

compareTo. MWStructArray inherits this method from the MWArray class.

equals. MWStructArray inherits this method from the MWArray class.

hashCode. MWStructArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWStructArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWStructArray overrides the sharedCopy method
of class MWArray.

The prototype for the sharedCopy method is

public Object sharedCopy()

4-134



Using Class Methods

Input Parameters

None

Example — Making a Shared Copy of a Structure Array Object

Create an MWStructArray object and then a shared copy of that object:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

Object C = S.sharedCopy();

System.out.println("Shared copy of structure S is:");
System.out.println(C.toString());

When run, the example displays this output:

Shared copy of structure S is:
1x2 struct array with fields:

f1
f2
f3

toString. MWStructArray inherits this method from the MWArray class.

Using MWCellArray
This section covers the following topics:

• “Constructing an MWCellArray” on page 4-136

• “Methods to Destroy an MWCellArray” on page 4-137

• “Methods to Return Information About an MWCellArray” on page 4-138

• “Methods to Get and Set Data in the MWCellArray” on page 4-140

• “Methods to Copy, Convert, and Compare MWCellArrays” on page 4-147

4-135



4 Using MWArray Classes

Constructing an MWCellArray
Use the tables in this section to construct an MWCellArray from a particular
Java data type. See the examples at the end of this section for more help:

Constructing an Empty Cell Array. To construct an empty 0-by-0 MATLAB
cell array, use

MWCellArray();

To construct an MWCellArray object with the specified dimensions, use

MWCellArray(int[] dims);

To construct an MWCellArray object with the specified number of rows and
columns, use

MWCellArray(int rows, int cols);

Input Parameters

dims

Array of dimension sizes

rows

Number of rows

cols

Number of columns

Exceptions

The MWCellArray constructor throws the following exception:

NegativeArraySizeException

The specified dims parameter is negative.

4-136



Using Class Methods

Example — Constructing an Empty Cell Array Object

This first example creates an empty MWCellArray object:

MWCellArray C = new MWCellArray();
System.out.println("C = " + C.toString());

When run, the example displays this output:

C = []

Example — Constructing an Initialized Cell Array Object

The second example constructs and initializes a 2-by-3 MWCellArray object:

int[] cdims = {2, 3};
MWCellArray C = new MWCellArray(cdims);

Integer[] val = new Integer[6];
for (int i = 0; i < 6; i++)

val[i] = new Integer(i * 15);

for (int i = 0; i < 2; i++)
for (int j = 0; j < 3; j++)

{
int[] idx = {i+1, j+1};
C.set(idx, val[j + (i * 3)]);
}

System.out.println("C = " + C.toString());

When run, the example displays this output:

C = [ 0] [15] [30]
[45] [60] [75]

Methods to Destroy an MWCellArray
To destroy the arrays, use either dispose or disposeArray.

4-137



4 Using MWArray Classes

Method Description

“dispose” on
page 4-138

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-138

Frees all native MATLAB arrays contained in the input
object.

dispose. This method frees the native MATLAB array contained by this
array. The dispose method of MWCellArray overrides the dispose method
of class MWArray.

The prototype for the dispose method is as follows:

public void dispose()

All MWArray references returned by get(int), toArray(), or getData() are
also disposed of.

Input Parameters

None

Example — Disposing of a Cell Array Object

Create a 2-by-3 MWCellArray object and then dispose of it.

int[] cdims = {2, 3};
MWCellArray C = new MWCellArray(cdims);

C.dispose();

disposeArray. MWCellArray inherits this method from the MWArray class.

Methods to Return Information About an MWCellArray
Use these methods to return information about an object of class MWCellArray.

4-138



Using Class Methods

Method Description

“classID” on page 4-139 Returns the MATLAB type of this array.

“getDimensions” on page
4-139

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-140 Tests whether the array has no elements.

“numberOfDimensions”
on page 4-140

Returns the number of dimensions of this array.

“numberOfElements” on
page 4-140

Returns the total number of elements in this
array.

classID. This method returns the MATLAB type of this array. The classID
method of MWCellArray overrides the classID method of class MWArray.

The prototype for the classID method is

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of a Cell Array

Create an MWCellArray object and display its class:

int[] cdims = {2, 3};
MWCellArray C = new MWCellArray(cdims);

System.out.println("Class of C is " + C.classID());

When run, the example displays this output:

Class of C is cell

getDimensions. MWCellArray inherits this method from the MWArray class.

4-139



4 Using MWArray Classes

isEmpty. MWCellArray inherits this method from the MWArray class.

numberOfDimensions. MWCellArray inherits this method from the
MWArray class.

numberOfElements. MWCellArray inherits this method from the MWArray
class.

Methods to Get and Set Data in the MWCellArray
Use these methods to get and set values in an object of class MWCellArray.

Method Description

“get” on page
4-140

Returns the element at the specified offset as an Object.

“getCell” on
page 4-142

Returns a shared copy of the element at the specified
one-based offset in this array as an MWArray instance.

“getData” on
page 4-143

Returns a one-dimensional array containing a copy of the
data in the underlying MATLAB array.

“set” on page
4-144

Replaces the element at the specified one-based offset in
this array with the specified element.

“toArray” on
page 4-146

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

get. This method returns the element at the specified one-based offset
in this array. The returned element is converted to a Java array using
default conversion rules. Calling this method is equivalent to calling
getCell(index).toArray().

The get method of MWCellArray overrides the get method of class MWArray.

To get the element at a specific index, use one of the following:

public Object get(int index)
public Object get(int[] index)

4-140



Using Class Methods

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWCellArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCellArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Getting Data from a Cell Array with get

Use get to read index (1,3) of MWCellArray object C:

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Integer val = new Integer(15);
int[] index = {1, 3};

4-141



4 Using MWArray Classes

C.set(index, val);

Object x = C.get(index);
System.out.println("Cell data C(1,3) is " + x.toString());

When run, the example displays this output:

Cell data C(1,3) is 15

getCell. This method returns a shared copy of the element at the specified
one-based offset in this array as an MWArray instance.

To get the element at a specific index, use one of the following:

public MWArray getCell(int index)
public MWArray getCell(int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

getCell returns an MWArray instance representing the requested cell. When
you are done using this instance, call MWArray.dispose() to dispose of it.

Input Parameters

index

Index of the requested element in the MWCellArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCellArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

4-142



Using Class Methods

Exceptions

The getCell method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

getData. This method returns a one-dimensional array containing a copy
of the data in the underlying MATLAB array. The getData method of
MWCellArray overrides the getData method of class MWArray.

The prototype for the getData method is as follows:

public Object getData()

getData returns a one-dimensional array of elements stored in column-wise
order. Each element in the returned array is converted to a Java array when
you call MWArray.toArray() on the corresponding cell.

Input Parameters

None

Example — Getting Cell Array Data with getData

Use getData to read data from MWCellArray object C:

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Integer[] val = new Integer[3];
for (int i = 0; i < 3; i++)

val[i] = new Integer(i * 15);

for (int i = 1; i <= 3; i++)
C.set(i, val[i-1]);

4-143



4 Using MWArray Classes

System.out.println("Data read from cell array C: \n");
MWArray[] x = (MWArray[]) C.getData();

for (int i = 0; i < x.length; i++)
System.out.println(x[i]);

System.out.println();

When run, the example displays this output:

Data read from cell array C:
0
0
0

set. This method replaces the element at the specified one-based offset in this
array with the specified element. The set method of MWCellArray overrides
the set method of class MWArray.

To get the element at a specific index, use one of the following:

public void set(int index, Object element)
public void set(int[] index, Object element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

If element is of type MWArray, the cell at index is set to a shared copy of the
underlying MATLAB array. Otherwise, a new MATLAB array is created from
element using default conversion rules and assigned to the cell at index.

4-144



Using Class Methods

index

Index of the requested element in the MWCellArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCellArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting Values in a Cell Array

Set the value of the MWCellArray object C at index (1,3):

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Integer val = new Integer(15);
int[] index = {1, 3};

C.set(index, val);

Object x = C.get(index);
System.out.println("Cell data C(1,3) is " + x.toString());

When run, the example displays this output:

Cell data C(1,3) is 15

4-145



4 Using MWArray Classes

toArray. This method returns an array containing a copy of the data in the
underlying MATLAB array.

The prototype for the toArray method is as follows:

public Object[] toArray()

toArray returns an array with the same dimensionality as the MATLAB
array. Each element in the returned array is converted to a Java array when
you call MWArray.toArray() on the corresponding cell.

Input Parameters

None

Example — Getting Cell Array Data with toArray

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

System.out.println("Data read from cell array C \n");
Object x = (Object) C.toArray();
System.out.println();

for (int i = 0; i < x[0].length; i++)
System.out.println(x[0][i]);

When run, the example displays this output:

Data read from cell array C
[]
[]
[]

4-146



Using Class Methods

Methods to Copy, Convert, and Compare MWCellArrays
Use these methods to copy, convert, and compare objects of class MWCellArray.

Method Description

“clone” on
page 4-147

Creates and returns a deep copy of this array.

“compareTo”
on page
4-148

Compares this array with the specified array for order.

“equals” on
page 4-148

Indicates whether some other array is equal to this one.

“hashCode”
on page
4-148

Returns a hash code value for the array.

“sharedCopy”
on page
4-148

Creates and returns a shared copy of this array.

“toString” on
page 4-149

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWCellArray overrides the clone method of class
MWArray.

The prototype for the clone method is as follows:

public Object clone()

Input Parameters

None

4-147



4 Using MWArray Classes

Exceptions

The clone method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Cloning a Cell Array Object

Create an MWCellArray object and then a clone of that object:

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Object X = C.clone();

System.out.println("Clone of cell array C is:");
System.out.println(X.toString());

When run, the example displays this output:

Clone of cell array C is:
[] [] []

compareTo. MWCellArray inherits this method from the MWArray class.

equals. MWCellArray inherits this method from the MWArray class.

hashCode. MWCellArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWCellArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWCellArray overrides the sharedCopy method
of class MWArray.

The prototype for the sharedCopy method is

4-148



Using Class Methods

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of a Cell Array Object

Create an MWCellArray object and then a shared copy of that object:

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Object X = C.sharedCopy();

System.out.println("Shared copy of cell array C is:");
System.out.println(X.toString());

When run, the example displays this output:

Shared copy of cell array C is:
[] [] []

toString. MWCellArray inherits this method from the MWArray class.

Using MWClassID
The MWClassID class enumerates all MATLAB array types. This class
contains no public constructors. A set of public static MWClassID instances is
provided, one for each MATLAB array type.

MWClassID extends class java.lang.Object.

MWClassID implements interface java.io.Serializable.

Fields of MWClassID

CELL. CELL represents MATLAB array type cell.

4-149



4 Using MWArray Classes

CHAR. CHAR represents MATLAB array type char.

DOUBLE. DOUBLE represents MATLAB array type double.

FUNCTION. FUNCTION represents MATLAB array type function.

Note MATLAB function arrays are not supported in the current release.

INT8. INT8 represents MATLAB array type int8.

INT16. INT16 represents MATLAB array type int16.

INT32. INT32 represents MATLAB array type int32.

INT64. INT64 represents MATLAB array type int64.

LOGICAL. LOGICAL represents MATLAB array type logical.

OBJECT. OBJECT represents MATLAB array type object.

Note MATLAB object arrays are not supported in the current release.

OPAQUE. OPAQUE represents MATLAB array type opaque.

Note MATLAB opaque arrays are not supported in the current release.

SINGLE. SINGLE represents MATLAB array type single.

STRUCT. STRUCT represents MATLAB array type struct.

UINT8. UINT8 represents MATLAB array type uint8.

UINT16. UINT16 represents MATLAB array type uint16.

4-150



Using Class Methods

UINT32. UINT32 represents MATLAB array type uint32.

UINT64. UINT64 represents MATLAB array type uint64.

UNKNOWN. UNKNOWN represents MATLAB empty array type.

Example — Specifying an MWClassID Value

Construct a scalar numeric array of type MWClassID.INT16:

double AReal = 24;

MWNumericArray A = new MWNumericArray(AReal, MWClassID.INT16);
System.out.println("Array A of type " + A.classID() + " = \n" + A);

When you run this example, the results are as follows:

Array A of type int16 =
24

Methods of MWClassID

equals. This method indicates whether some other MWClassID is equal to
this one. The equals method of MWClassID overrides the equals method
of class java.lang.Object.

The prototype for equals is as follows:

public final boolean equals(java.lang.Object obj)

getSize. This method returns the size in bytes of an array element of this
type.

The prototype for getSize is as follows:

public final int getSize()

hashCode. This method returns a hash code value for the type. The
hashCode method of MWClassID overrides the hashCode method of class
java.lang.Object.

4-151



4 Using MWArray Classes

The prototype for hashCode is as follows:

public final int hashCode()

isNumeric. This method tests if this type is numeric.

The prototype for isNumeric is as follows:

public boolean isNumeric()

toString. This method returns a string representation of the property. The
toString method of MWClassID overrides the toString method of class
java.lang.Object.

The prototype for toString is as follows:

public final java.lang.String toString()

Using MWComplexity
The MWComplexity class enumerates the MATLAB real/complex array
property. This class contains no public constructors. A set of public static
MWComplexity instances is provided, one to represent real and one for
complex.

MWComplexity extends class java.lang.Object.

MWComplexity implements interface java.io.Serializable.

Fields of MWComplexity

REAL. REAL represents a real numeric value. The prototype for REAL is as
follows:

public static final MWComplexity REAL

COMPLEX. COMPLEX represents a complex numeric value containing both real
and imaginary parts. The prototype for COMPLEX is as follows:

public static final MWComplexity COMPLEX

4-152



Using Class Methods

Example – Determining the Complexity of an Array

Determine whether matrix A is real or complex. The complexity method of
MWNumericArray returns an enumeration of type MWComplexity.

double AReal = 24;
double AImag = 5;

MWNumericArray A = new MWNumericArray(AReal, AImag);
System.out.println("A is a " + A.complexity() + " matrix");

When run, the example displays this output:

A is a complex matrix

Methods of MWComplexity

toString. This method returns a string representation of the property. The
toString method of MWComplexity overrides the toString method of class
java.lang.Object.

The prototype for the toString method is as follows:

public java.lang.String toString()

4-153



4 Using MWArray Classes

4-154



5

Sample Applications (Java)

Note The examples for MATLAB Builder for Java are in
matlabroot\toolbox\javabuilder\Examples.

In addition to these examples, see “Example: Magic Square” on page 1-15 for
a simple example that gets you started using MATLAB Builder for Java.

Plot Example (p. 5-2) How to encapsulate a MATLAB
function that draws a plot given two
input arguments

Spectral Analysis Example (p. 5-8) How to create a class that has two
methods

Matrix Math Example (p. 5-16) How to create and use a class with
three methods that encapsulate
MATLAB functions



5 Sample Applications (Java)

Plot Example
The purpose of the example is to show you how to do the following:

• Use MATLAB Builder for Java to convert a MATLAB function (drawplot)
to a method of a Java class (plotter) and wrap the class in a Java
component (plotdemo).

• Access the component in a Java application (createplot.java) by
instantiating the plotter class and using the MWArray class library to
handle data conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• Build and run the createplot.java application.

The drawplot function displays a plot of input parameters x and y.

Plot Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

matlabroot\toolbox\javabuilder\Examples\PlotExample

b. At the MATLAB command prompt, cd to the new PlotExample
subdirectory in your work directory.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 6-2.

3 Write the drawplot function as you would any MATLAB function.

The following code defines the drawplot function:

function drawplot(x,y)

5-2



Plot Example

plot(x,y);

This code is already in your work directory in
PlotExample\PlotDemoComp\drawplot.m.

4 Specify a Java component as follows:

a. While in MATLAB, issue the following command to open the
Deployment Tool dialog box:

deploytool

b. Create a new project with these settings:

Field Value

Component
name

plotdemo

Class name plotter

Show verbose
output

Selected

c. Add the computefft.m and plotfft.m M-files to the project.

d. Save the project.

5 Build the component.

6 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\javabuilder\Examples\PlotExample
\PlotDemoJavaApp\createplot.java.

The program graphs a simple parabola from the equation

5-3



5 Sample Applications (Java)

The program listing is shown here.

createplot.java

/* createplot.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2006 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import plotdemo.*;

/*

* createplot class demonstrates plotting x-y data into

* a MATLAB figure window by graphing a simple parabola.

*/

class createplot

{

public static void main(String[] args)

{

MWNumericArray x = null; /* Array of x values */

MWNumericArray y = null; /* Array of y values */

plotter thePlot = null; /* Plotter class instance */

int n = 20; /* Number of points to plot */

try

{

/* Allocate arrays for x and y values */

int[] dims = {1, n};

x = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

y = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

/* Set values so that y = x^2 */

for (int i = 1; i <= n; i++)

{

5-4



Plot Example

x.set(i, i);

y.set(i, i*i);

}

/* Create new plotter object */

thePlot = new plotter();

/* Plot data */

thePlot.drawplot(x, y);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(x);

MWArray.disposeArray(y);

if (thePlot != null)

thePlot.dispose();

}

}

}

The program does the following:

• Creates two arrays of double values, using MWNumericArray to represent
the data needed to plot the equation.

• Instantiates the plotter class as thePlot object, as shown:

thePlot = new plotter();

• Calls the drawplot method to plot the equation using the MATLAB
plot function, as shown:

thePlot.drawplot(x,y);

5-5



5 Sample Applications (Java)

• Uses a try-catch block to catch and handle any exceptions.

7 Compile the createplot application using javac.

a. On Windows, execute the following command:

javac -classpath
.;matlabroot\java\jar\toolbox\javabuilder.jar;
.\distrib\plotdemo.jar createplot.java

b. On UNIX, execute this command:

javac -classpath
.:matlabroot/java/jar/toolbox/javabuilder.jar:
./distrib/plotdemo.jar createplot.java

8 Run the application.

To run the createplot.class file, do one of the following:

On Windows, type

java -classpath
.;matlabroot\java\jar\toolbox\javabuilder.jar;
.\distrib\plotdemo.jar
-Djava.library.path=matlabroot\bin\win32;.\distrib
createplot

On UNIX, type

java -classpath
.:matlabroot/java/jar/toolbox/javabuilder.jar:
./distrib/plotdemo.jar
-Djava.library.path=matlabroot/bin/<Arch>./distrib
createplot

% where <Arch> = glux86 gluxa64 sol2

5-6



Plot Example

Note The supported JRE version is 1.5.0. To find out what JRE you are
using, refer to the output of 'version -java' in MATLAB or refer to the
jre.cfg file in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

The createplot program should display the output:

5-7



5 Sample Applications (Java)

Spectral Analysis Example
The purpose of the example is to show you the following:

• How to use MATLAB Builder for Java to create a component
(spectralanalysis) containing a class that has a private method that is
automatically encapsulated.

• How to access the component in a Java application (powerspect.java),
including use of the MWArray class hierarchy to represent data.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the application

The component spectralanalysis analyzes a signal and graphs the result.
The class, fourier, performs a Fast Fourier Transform (FFT) on an input data
array. A method of this class, computefft, returns the results of that FFT
as two output arrays — an array of frequency points and the power spectral
density. The second method, plotfft, graphs the returned data. These two
methods, computefft and plotfft, encapsulate MATLAB functions.

The MATLAB code for these two methods is in
computefft.m and plotfft.m, which can be found in
matlabroot\toolbox\javabuilder\Examples\SpectraExample\SpectraDemoComp.

computefft.m

function [fftData, freq, powerSpect] = ComputeFFT(data, interval)
% COMPUTEFFT Computes the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = COMPUTEFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% product.
% Copyright 2001-2006 The MathWorks, Inc.
if (isempty(data))

fftdata = [];
freq = [];

5-8



Spectral Analysis Example

powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftData = fft(data);
freq = (0:length(fftData)-1)/(length(fftData)*interval);
powerSpect = abs(fftData)/(sqrt(length(fftData)));

plotfft.m

function PlotFFT(fftData, freq, powerSpect)
%PLOTFFT Computes and plots the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = PLOTFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% product.
% Copyright 2001-2006 The MathWorks, Inc.
len = length(fftData);

if (len <= 0)
return;

end
plot(freq(1:floor(len/2)), powerSpect(1:floor(len/2)))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

Spectral Analysis Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

matlabroot\toolbox\javabuilder\Examples\SpectraExample

b. At the MATLAB command prompt, cd to the new SpectraExample
subdirectory in your work directory.

5-9



5 Sample Applications (Java)

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 6-2.

3 Write the M-code that you want to access.

This example uses computefft.m and plotfft.m, which are already in
your work directory in SpectraExample\SpectraDemoComp.

4 Specify a Java component as follows:

a. While in MATLAB, issue the following command to open the
Deployment Tool dialog box:

deploytool

b. Create a new project with these settings:

Field Value

Component
name

spectralanalysis

Class name fourier

Show verbose
output

Selected

c. Add the plotfft.m M-file to the project.

Note In this example, the application that uses the fourier class
does not need to call computefft directly. The computefft method
is required only by the plotfft method. Thus, when creating the
component, you do not need to add the computefft function, although
doing so does no harm.

d. Save the project. Make note of the project directory because you will
refer to it later when you build the program that will use it.

5 Build the component.

5-10



Spectral Analysis Example

6 Write source code for an application that accesses the component.

The sample application for this example is in
SpectraExample\SpectraDemoJavaApp\powerspect.java.

The program listing is shown here.

powerspect.java

/* powerspect.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2006 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import spectralanalysis.*;

/*

* powerspect class computes and plots the power

* spectral density of an input signal.

*/

class powerspect

{

public static void main(String[] args)

{

double interval = 0.01; /* Sampling interval */

int nSamples = 1001; /* Number of samples */

MWNumericArray data = null; /* Stores input data */

Object[] result = null; /* Stores result */

fourier theFourier = null; /* Fourier class instance */

try

{

/*

* Construct input data as sin(2*PI*15*t) +

* sin(2*PI*40*t) plus a random signal.

* Duration = 10

5-11



5 Sample Applications (Java)

* Sampling interval = 0.01

*/

int[] dims = {1, nSamples};

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE,

MWComplexity.REAL);

for (int i = 1; i <= nSamples; i++)

{

double t = (i-1)*interval;

double x = Math.sin(2.0*Math.PI*15.0*t) +

Math.sin(2.0*Math.PI*40.0*t) +

Math.random();

data.set(i, x);

}

/* Create new fourier object */

theFourier = new fourier();

/* Compute power spectral density and plot result */

result = theFourier.plotfft(3, data,

new Double(interval));

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(data);

MWArray.disposeArray(result);

if (theFourier != null)

theFourier.dispose();

}

}

}

5-12



Spectral Analysis Example

The program does the following:

• Constructs an input array with values representing a random signal
with two sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data, as shown:

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE, MWComplexity.REAL);

• Instantiates a fourier object

• Calls the plotfft method, which calls computeftt and plots the data

• Uses a try/catch block to handle exceptions

• Frees native resources using MWArray methods

7 Compile the powerspect.java application using javac.

a. Open a Command Prompt window and cd to the
matlabroot\work\spectralanalysis directory.

b. On Windows, execute the following command:

javac -classpath
.;matlabroot\java\jar\toolbox\javabuilder.jar;
.\distrib\spectralanalysis.jar powerspect.java

c. On UNIX, execute the following command:

javac -classpath
.:matlabroot/java/jar/toolbox/javabuilder.jar:
./distrib/spectralanalysis.jar powerspect.java

Note For matlabroot substitute the MATLAB root directory on your
system. Type matlabroot to see this directory name.

8 Run the application

• On Windows, execute the powerspect class file as follows:

java -classpath

5-13



5 Sample Applications (Java)

.;matlabroot\java\jar\toolbox\javabuilder.jar;

.\distrib\spectralanalysis.jar
-Djava.library.path=matlabroot\bin\win32;.\distrib
powerspect

• On UNIX, execute the powerspect class file as follows:

java -classpath
.:matlabroot/java/jar/toolbox/javabuilder.jar:
./distrib/spectralanalysis.jar
-Djava.library.path=matlabroot/bin/<Arch>./distrib
powerspect
% where <Arch> = glux86 gluxa64 sol2

Note The supported JRE version is 1.5.0. To find out what JRE you are
using, refer to the output of 'version -java' in MATLAB or refer to the
jre.cfg file in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

The powerspect program should display the output:

5-14



Spectral Analysis Example

5-15



5 Sample Applications (Java)

Matrix Math Example
The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a component class.

• How to manually handle native memory management.

• How to access the component in a Java application (getfactor.java) by
instantiating Factor and using the MWArray class library to handle data
conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the MatrixMathDemoApp application

This example builds a Java component to perform matrix math. The example
creates a program that performs Cholesky, LU, and QR factorizations on a
simple tridiagonal matrix (finite difference matrix) with the following form:

A = [ 2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2 ]

You supply the size of the matrix on the command line, and the program
constructs the matrix and performs the three factorizations. The original
matrix and the results are printed to standard output. You may optionally
perform the calculations using a sparse matrix by specifying the string
"sparse" as the second parameter on the command line.

MATLAB Functions to Be Encapsulated
The following code defines the MATLAB functions used in the example.

cholesky.m

function [L] = cholesky(A)

5-16



Matrix Math Example

%CHOLESKY Cholesky factorization of A.

% L = CHOLESKY(A) returns the Cholesky factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2006 The MathWorks, Inc.

L = chol(A);

ludecomp.m

function [L,U] = ludecomp(A)

%LUDECOMP LU factorization of A.

% [L,U] = LUDECOMP(A) returns the LU factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2006 The MathWorks, Inc.

[L,U] = lu(A);

qrdecomp.m

function [Q,R] = qrdecomp(A)

%QRDECOMP QR factorization of A.

% [Q,R] = QRDECOMP(A) returns the QR factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2006 The MathWorks, Inc.

[Q,R] = qr(A);

Matrix Math Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

matlabroot\toolbox\javabuilder\Examples\MatrixMathExample

5-17



5 Sample Applications (Java)

b. At the MATLAB command prompt, cd to the new MatrixMathExample
subdirectory in your work directory.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 6-2.

3 Write the MATLAB functions as you would any MATLAB function.

The code for the cholesky, ludecomp, and qrdecomp functions is already in
your work directory in MatrixMathExample\MatrixMathDemoComp\.

4 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

5 Specify a Java component as follows:

Field Value

Component
name

factormatrix

Class name factor

Show verbose
output

Selected

6 Add the cholesky.m, ludecomp.m and qrdecomp.m M-files to the project.

7 Save the project.

8 Build the component.

9 Write source code for an application that accesses the component.

The sample application for this example is in
MatrixMathExample\MatrixMathDemoJavaApp\getfactor.java.

The program listing is shown here.

5-18



Matrix Math Example

getfactor.java

/* getfactor.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2006 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import factormatrix.*;

/*

* getfactor class computes cholesky, LU, and QR

* factorizations of a finite difference matrix

* of order N. The value of N is passed on the

* command line. If a second command line arg

* is passed with the value of "sparse", then

* a sparse matrix is used.

*/

class getfactor

{

public static void main(String[] args)

{

MWNumericArray a = null; /* Stores matrix to factor */

Object[] result = null; /* Stores the result */

factor theFactor = null; /* Stores factor class instance */

try

{

/* If no input, exit */

if (args.length == 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/* Convert input value */

int n = Integer.valueOf(args[0]).intValue();

5-19



5 Sample Applications (Java)

if (n <= 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/*

* Allocate matrix. If second input is "sparse"

* allocate a sparse array

*/

int[] dims = {n, n};

if (args.length > 1 && args[1].equals("sparse"))

a = MWNumericArray.newSparse(dims[0], dims[1],n+2*(n-1), MWClassID.DOUBLE, MWComplexity.REAL);

else

a = MWNumericArray.newInstance(dims,MWClassID.DOUBLE, MWComplexity.REAL);

/* Set matrix values */

int[] index = {1, 1};

for (index[0] = 1; index[0] <= dims[0]; index[0]++)

{

for (index[1] = 1; index[1] <= dims[1]; index[1]++)

{

if (index[1] == index[0])

a.set(index, 2.0);

else if (index[1] == index[0]+1 || index[1] == index[0]-1)

a.set(index, -1.0);

}

}

/* Create new factor object */

theFactor = new factor();

/* Print original matrix */

System.out.println("Original matrix:");

System.out.println(a);

/* Compute cholesky factorization and print results. */

5-20



Matrix Math Example

result = theFactor.cholesky(1, a);

System.out.println("Cholesky factorization:");

System.out.println(result[0]);

MWArray.disposeArray(result);

/* Compute LU factorization and print results. */

result = theFactor.ludecomp(2, a);

System.out.println("LU factorization:");

System.out.println("L matrix:");

System.out.println(result[0]);

System.out.println("U matrix:");

System.out.println(result[1]);

MWArray.disposeArray(result);

/* Compute QR factorization and print results. */

result = theFactor.qrdecomp(2, a);

System.out.println("QR factorization:");

System.out.println("Q matrix:");

System.out.println(result[0]);

System.out.println("R matrix:");

System.out.println(result[1]);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(a);

MWArray.disposeArray(result);

if (theFactor != null)

theFactor.dispose();

}

}

}

The statementtheFactor = new factor();

5-21



5 Sample Applications (Java)

creates an instance of the class factor.

The following statements call the methods that encapsulate the MATLAB
functions:

result = theFactor.cholesky(1, a);
...
result = theFactor.ludecomp(2, a);
...
result = theFactor.qrdecomp(2, a);
...

10 Compile the getfactor application using javac.

cd to the matlabroot\work\factormatrix directory.

• On Windows, execute the following command:

javac -classpath
.;matlabroot\java\jar\toolbox\javabuilder.jar;
.\distrib\factormatrix.jar getfactor.java

• On UNIX, execute the following command:

javac -classpath
.:matlabroot/java/jar/toolbox/javabuilder.jar:
./distrib/factormatrix.jar getfactor.java

11 Run the application.

Run getfactor using a nonsparse matrix

• On Windows, execute the getfactor class file as follows:

java -classpath
.;matlabroot\java\jar\toolbox\javabuilder.jar;
.\distrib\factormatrix.jar
-Djava.library.path=matlabroot\bin\win32;.\distrib
getfactor 4

5-22



Matrix Math Example

• On UNIX, execute the getfactor class file as follows:

java -classpath
.:matlabroot/java/jar/toolbox/javabuilder.jar:
./distrib/factormatrix.jar
-Djava.library.path=matlabroot/bin/<Arch>./distrib
getfactor 4
% where <Arch> = glux86 gluxa64 sol2

Note The supported JRE version is 1.5.0. To find out what JRE you are using,
refer to the output of 'version -java' in MATLAB or refer to the jre.cfg file
in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

Output for the Matrix Math Example

Original matrix:
2 -1 0 0

-1 2 -1 0
0 -1 2 -1
0 0 -1 2

Cholesky factorization:
1.4142 -0.7071 0 0

0 1.2247 -0.8165 0
0 0 1.1547 -0.8660
0 0 0 1.1180

LU factorization:
L matrix:

1.0000 0 0 0
-0.5000 1.0000 0 0

0 -0.6667 1.0000 0
0 0 -0.7500 1.0000

U matrix:
2.0000 -1.0000 0 0

5-23



5 Sample Applications (Java)

0 1.5000 -1.0000 0
0 0 1.3333 -1.0000
0 0 0 1.2500

QR factorization:
Q matrix:

-0.8944 -0.3586 -0.1952 0.1826
0.4472 -0.7171 -0.3904 0.3651

0 0.5976 -0.5855 0.5477
0 0 0.6831 0.7303

R matrix:
-2.2361 1.7889 -0.4472 0

0 -1.6733 1.9124 -0.5976
0 0 -1.4639 1.9518
0 0 0 0.9129

To run the same program for a sparse matrix, use the same command and add
the string sparse to the command line:

java (... same arguments) getfactor 4 sparse

Output for a Sparse Matrix

Original matrix:
(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4) 2

Cholesky factorization:

5-24



Matrix Math Example

(1,1) 1.4142
(1,2) -0.7071
(2,2) 1.2247
(2,3) -0.8165
(3,3) 1.1547
(3,4) -0.8660
(4,4) 1.1180

LU factorization:
L matrix:

(1,1) 1.0000
(2,1) -0.5000
(2,2) 1.0000
(3,2) -0.6667
(3,3) 1.0000
(4,3) -0.7500
(4,4) 1.0000

U matrix:
(1,1) 2.0000
(1,2) -1.0000
(2,2) 1.5000
(2,3) -1.0000
(3,3) 1.3333
(3,4) -1.0000
(4,4) 1.2500

QR factorization:
Q matrix:

(1,1) 0.8944
(2,1) -0.4472
(1,2) 0.3586
(2,2) 0.7171
(3,2) -0.5976
(1,3) 0.1952
(2,3) 0.3904
(3,3) 0.5855

5-25



5 Sample Applications (Java)

(4,3) -0.6831
(1,4) 0.1826
(2,4) 0.3651
(3,4) 0.5477
(4,4) 0.7303

R matrix:
(1,1) 2.2361
(1,2) -1.7889
(2,2) 1.6733
(1,3) 0.4472
(2,3) -1.9124
(3,3) 1.4639
(2,4) 0.5976
(3,4) -1.9518
(4,4) 0.9129

Understanding the getfactor Program
The getfactor program takes one or two arguments from standard input.
The first argument is converted to the integer order of the test matrix. If the
string sparse is passed as the second argument, a sparse matrix is created
to contain the test array. The Cholesky, LU, and QR factorizations are then
computed and the results are displayed to standard output.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls
the cholesky, ludecomp, and qrdecomp methods. This part is executed
inside of a try block. This is done so that if an exception occurs during
execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard
output to let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources
before exiting.

5-26



6

Reference Information for
Java

Requirements for MATLAB Builder
for Java (p. 6-2)

Software requirements for using
MATLAB Builder for Java

MATLAB Builder for Java Graphical
User Interface (p. 6-7)

Details about the windows, dialog
boxes, menus, and buttons

Data Conversion Rules (p. 6-10) Details about the way that MATLAB
Builder for Java handles data

Programming Interfaces Generated
by Java Builder (p. 6-14)

Details about the function signatures
for methods that MATLAB Builder
for Java creates

MWArray Class Specification
(p. 6-19)

Link to class information



6 Reference Information for Java

Requirements for MATLAB Builder for Java
• “System Requirements” on page 6-2

• “Limitations and Restrictions” on page 6-2

• “Settings for Environment Variables (Development Machine)” on page 6-2

System Requirements
System requirements and restrictions on use for MATLAB Builder for Java
are as follows:

• All requirements for the MATLAB Compiler; see “Installation and
Configuration” in the MATLAB Compiler documentation.

• Java Development Kit (JDK) 1.4 or later must be installed.

• Java Runtime Environment (JRE) that is used by MATLAB and MCR.

Note The supported JRE version is 1.5.0. To find out what JRE you
are using, refer to the output of 'version -java' in MATLAB or
refer to the jre.cfg file in matlabroot/sys/java/jre/<arch> or
mcrroot/sys/java/jre/<arch>.

Limitations and Restrictions
In general, limitations and restrictions on the use of Java Builder are the
same as those for the MATLAB Compiler. See “Limitations and Restrictions”
in the MATLAB Compiler documentation for details.

Settings for Environment Variables (Development
Machine)
Before starting to program, you must set the environment on your
development machine to be compatible with MATLAB Builder for Java.

Specify the following environment variables:

• “JAVA_HOME Variable” on page 6-3

6-2



Requirements for MATLAB Builder for Java

• “Java CLASSPATH Variable” on page 6-4

• “Native Library Path Variables” on page 6-6

JAVA_HOME Variable
Java Builder uses the JAVA_HOME variable to locate the Java Software
Development Kit (SDK) on your system. It also uses this variable to set the
versions of the javac.exe and jar.exe files it uses during the build process.

Note If you do not set JAVA_HOME, Java Builder assumes that \jdk\bin
is on the system path.

Setting JAVA_HOME on Windows (Development Machine). If you are
working on Windows, set your JAVA_HOME variable by entering the following
command in your DOS command window. (In this example, your Java SDK is
installed in directory C:\java\jdk\j2sdk1.5.0.)

set JAVA_HOME=C:\java\jdk\j2sdk1.5.0

Alternatively, you can add jdk_directory/bin to the system path. For
example:

set PATH=%PATH%;c:\java\jdk\j2sdk1.5.0\bin

You can also set these variables globally using the Windows Control Panel.
Consult your Windows documentation for instructions on setting system
variables.

Note The supported JRE version is 1.5.0. To find out what JRE you are using,
refer to the output of 'version -java' in MATLAB or refer to the jre.cfg file
in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

Setting JAVA_HOME on UNIX (Development Machine). If you are
working on a UNIX system, set your JAVA_HOME variable by entering the
following commands at the command prompt. (In this example, your Java
SDK is installed in directory /java/jdk/j2sdk1.5.0.)

6-3



6 Reference Information for Java

setenv JAVA_HOME /java/jdk/j2sdk1.5.0

Alternatively, you can add jdk_directory\bin to the system path.

Java CLASSPATH Variable
To build and run a Java application that encapsulates MATLAB the system
needs to find .jar files containing the MATLAB libraries and the class and
method definitions that you have developed and built with Java Builder. To
tell the system how to locate the .jar files it needs, specify a classpath
either in the javac command or in your system environment variables.

Java uses the CLASSPATH variable to locate user classes needed to compile
or run a given Java class. The class path contains directories where all the
.class and/or .jar files needed by your program reside. These .jar files
contain any classes that your Java class depends on.

When you compile a Java class that uses classes contained in the
com.mathworks.toolbox.javabuilder package, you need to include a file
called javabuilder.jar on the Java class path. This file comes with Java
Builder; you can find it in the following directory:

matlabroot/toolbox/javabuilder/jar % (development machine)
mcrroot/toolbox/javabuilder/jar % (end-user machine)

where matlabroot refers to the root directory into which the MATLAB
installer has placed the MATLAB files, and mcrroot refers to the root
directory under which mcr is installed. Java Builder automatically
includes this .jar file on the class path when it creates the component.
To use a class generated by Java Builder, you need to add this
matlabroot/toolbox/javabuilder/jar/javabuilder.jar to the class path.

In addition, you need to add to the class path the .jar file created by Java
Builder for your compiled .class files.

Example: Setting CLASSPATH on Windows. Suppose your MATLAB
libraries are installed in C:\matlabroot\bin\win32, and your component
.jar files are in C:\mycomponent.

6-4



Requirements for MATLAB Builder for Java

Note For matlabroot substitute the MATLAB root directory on your system.
Type matlabroot to see this directory name.

To set your CLASSPATH variable on your development machine, enter the
following command at the DOS command prompt:

set CLASSPATH=.;C:\matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

C:\mycomponent\mycomponent.jar

Alternatively, if the Java SDK is installed, you can specify the class path on
the Java command line as follows.

javac

-classpath .;C:\matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

C:\mycomponent\mycomponent.jar usemyclass.java

where usemyclass.java is the file to be compiled.

It is recommended that you globally add any frequently used class paths to
the CLASSPATH system variable via the Windows Control Panel.

Example: Setting CLASSPATH on UNIX (Development Machine).
Suppose your UNIX environment is as follows:

• Your MATLAB libraries are installed in /matlabroot/bin/arch, (where
arch is either glnx86, glnxa64, mac, or sol2, depending on the operating
system of the machine.

• Your component .jar files are in /mycomponent.

To set your CLASSPATH variable, enter the following command at the prompt:

setenv CLASSPATH .:/matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

/mycomponent/mycomponent.jar

Like Windows, you can specify the class path directly on the Java command
line. To compile usemyclass.java, type the following:

6-5



6 Reference Information for Java

javac -classpath
.:/matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
/mycomponent/mycomponent.jar usemyclass.java

where usemyclass.java is the file to be compiled.

Native Library Path Variables
The operating system uses the native library path to locate native libraries
that are needed to run your Java class. See the following list of variable
names according to operating system:

Windows PATH

Linux LD_LIBRARY_PATH

Solaris LD_LIBRARY_PATH

Macintosh DYLD_LIBRARY_PATH

For information on how to set these path variables, see the following
topics in the “Stand-Alone Applications” section of the MATLAB Compiler
documentation:

• See “Testing the Application” for information on setting your path on a
development machine.

• See “Running the Application” for information on setting your path on
an end-user machine.

6-6



MATLAB Builder for Java Graphical User Interface

MATLAB Builder for Java Graphical User Interface
Use the MATLAB Builder for Java graphical user interface (GUI) to create
Java classes that encapsulate your M-file functions. You can build and
package Javacomponents that support the classes you create.

To start the application, run the following command at the MATLAB prompt:

deploytool

Use the GUI to perform the following tasks:

• Create projects that define your Java components

• Name the classes to contain the M-file methods you want to use and
associate the classes with a component in the project.

Associate the appropriate methods with each class

• Build Java class files and methods from the M-files you specify.

• Create a component installer, a package you can use to install the
components on another machine for development.

The Deployment Tool opens as shown.

6-7



6 Reference Information for Java

Note that the Deployment Tool window can be docked or undocked.

The Deployment Tool toolbar has the following icons.

Toolbar Icons

Name of Toolbar Icon Icon Click to...

New Project Create a new deployment project.

Open Project View projects and select one to
open.

Save Project Save the current project,
including all files and settings.

Add Class (only for
components that contain
classes)

Open the Add Class dialog box,
where you can specify the name
of a new class to be created as
part of the current project.

6-8



MATLAB Builder for Java Graphical User Interface

Toolbar Icons (Continued)

Name of Toolbar Icon Icon Click to...

Remove Remove the selected class folder
or the selected files from the
project.

Build Build the components specified
by the project, displaying the
build process in the Deployment
Tool Output pane.

Package Create a self-extracting
executable (Windows) or .zip
file (UNIX) that contains the files
needed to use the component in
an application.

Settings Change settings for the project.
You can improve performance
by changing settings, such as
whether to exclude the MCR or
change the search path when
building.

Help View a quick start and steps for
using the Deployment Tool.

6-9



6 Reference Information for Java

Data Conversion Rules
• “Java to MATLAB Conversion” on page 6-10

• “MATLAB to Java Conversion” on page 6-12

• “Unsupported MATLAB Array Types” on page 6-13

Java to MATLAB Conversion
The following table lists the data conversion rules for converting Java data
types to MATLAB types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

When calling an MWArray class method constructor, supplying a specific data
type causes Java Builder to convert to that type instead of the default.

Java to MATLAB Conversion Rules

Java Type MATLAB Type

double double

float single

byte int8

int int32

short int16

long int64

char char

boolean logical

java.lang.Double double

6-10



Data Conversion Rules

Java to MATLAB Conversion Rules (Continued)

Java Type MATLAB Type

java.lang.Float single

java.lang.Byte int8

java.lang.Integer int32

java.lang.Long int64

java.lang.Short int16

java.lang.Number double

Note Subclasses of java.lang.Number not listed above are
converted to double.

java.lang.Boolean logical

java.lang.Character char

java.lang.String char

Note A Java string is converted to a 1-by-N array of char
with N equal to the length of the input string.

An array of Java strings (String[]) is converted to an M-by-N
array of char, with M equal to the number of elements in the
input array and N equal to the maximum length of any of
the strings in the array.

Higher dimensional arrays of String are converted similarly.

In general, an N-dimensional array of String is converted
to an N+1 dimensional array of char with appropriate zero
padding where supplied strings have different lengths.

6-11



6 Reference Information for Java

MATLAB to Java Conversion
The following table lists the data conversion rules for converting MATLAB
data types to Java types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

MATLAB to Java Conversion Rules

MATLAB Type Java Type (Primitive) Java Type (Object)

cell N/A Object

Note Cell arrays are constructed and accessed as
arrays of MWArray.

structure N/A Object

Note Structure arrays are constructed and
accessed as arrays of MWArray.

char char java.lang.Character

double double java.lang.Double

single float java.lang.Float

int8 byte java.lang.Byte

int16 short java.lang.Short

int32 int java.lang.Integer

int64 long java.lang.Long

uint8 byte java.lang.ByteJava has no unsigned type
to represent the uint8 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

6-12



Data Conversion Rules

MATLAB to Java Conversion Rules (Continued)

MATLAB Type Java Type (Primitive) Java Type (Object)

uint16 short java.lang.shortJava has no unsigned type
to represent the uint16 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

uint32 int java.lang.IntegerJava has no unsigned type
to represent the uint32 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

uint64 long java.lang.LongJava has no unsigned type
to represent the uint64 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

logical boolean java.lang.Boolean

Function handle Not supported

Java class Not supported

User class Not supported

Unsupported MATLAB Array Types
Java has no unsigned types to represent the uint8, uint16, uint32, and
uint64 types used in MATLAB. Construction of and access to MATLAB
arrays of an unsigned type requires conversion.

6-13



6 Reference Information for Java

Programming Interfaces Generated by Java Builder
• “APIs Based on MATLAB Function Signatures” on page 6-14

• “Standard API” on page 6-15

• “mlx API” on page 6-17

• “Code Fragment: Signatures Generated for myprimes Example” on page
6-17

APIs Based on MATLAB Function Signatures
Java Builder generates two kinds of interfaces to handle MATLAB function
signatures.

• A standard signature in Java.

This interface specifies input arguments for each overloaded method as
one or more input arguments of class java.lang.Object or any subclass
(including subclasses of MWArray). The standard interface specifies return
values, if any, as a subclass of MWArray.

• mlx API

This interface allows the user to specify the inputs to a function as an
Object array, where each array element is one input argument. Similarly,
the user also gives the mlx interface a pre-allocated Object array to hold
the outputs of the function. The allocated length of the output array
determines the number of desired function outputs.

The mlx interface may also be accessed using java.util.List containers
in place of Object arrays for the inputs and outputs. Note that if List
containers are used, the output List passed in must contain a number of
elements equal to the desired number of function outputs.

For example, this would be incorrect usage:

java.util.List outputs = new ArrayList(3);
myclass.myfunction(outputs, inputs); // outputs contains 0 elements!

And this would be the correct usage:

java.util.List outputs = Arrays.asList(new Object[3]);
myclass.myfunction(outputs, inputs); // ok, list contains 3 elements

6-14



Programming Interfaces Generated by Java Builder

Typically you use the standard interface when you want to call MATLAB
functions that return a single array. In other cases you probably need to
use the mlx interface.

Standard API
The standard calling interface returns an array of one or more MWArray
objects.

The standard API for a generic function with none, one, more than one, or a
variable number of arguments, is shown in the following table.

Arguments API to Use

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

API if there
are no input
arguments

public Object[] foo(
int numArgsOut
)

API if there
is one input
argument

public Object[] foo(
int numArgsOut,
Object In1
)

API if there
are two
to N input
arguments

public Object[] foo(
int numArgsOut,
Object In1,
Object In2,
...
Object InN
)

API if there
are optional
arguments,
represented

public Object[] foo(
int numArgsOut,
Object in1,

6-15



6 Reference Information for Java

by the
varargin
argument

Object in2,
...,

Object InN,
Object varargin
)

Details about the arguments for these samples of standard signatures are
shown in the following table.

Argument Description Details About this Argument

numArgsOut Number of
outputs

An integer indicating the number of
outputs you want the method to return.
To return no arguments, omit this
argument.

The value of numArgsOut must be less
than or equal to the MATLAB function
nargout.

The numArgsOut argument must always
be the first argument in the list.

In1, In2,
...InN

Required input
arguments

All arguments that follow numArgsOut
in the argument list are inputs to the
method being called.

Specify all required inputs first. Each
required input must be of class MWArray
or any class derived from MWArray.

varargin Optional inputs You can also specify optional inputs if
your M-code uses the varargin input:
list the optional inputs, or put them
in an Object[] argument, placing the
array last in the argument list.

Out1, Out2,
...OutN

Output
arguments

With the standard calling interface, all
output arguments are returned as an
array of MWArrays.

6-16



Programming Interfaces Generated by Java Builder

mlx API
For a function with the following structure:

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

Java Builder generates the following API, as the mlx interface:

public void foo (List outputs, List inputs) throws MWException;
public void foo (Object[] outputs, Object[] inputs) throws MWException;

Code Fragment: Signatures Generated for myprimes
Example
For a specific example, look at the myprimes method. This method has one
input argument, so Java Builder generates three overloaded methods in Java.

When you add myprimes to the class myclass and build the component, Java
Builder generates the myclass.java file. A fragment of myclass.java is
listed to show the three overloaded implementations of the myprimes method
in the Java code. The first implementation shows the interface to be used if
there are no input arguments, the second shows the implementation to be
used if there is one input argument, and the third shows the feval interface.

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */
public void myprimes(Object[] lhs, Object[] rhs) throws MWException
{

(implementation omitted)
}

/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/
public Object[] myprimes(int nargout, Object n) throws MWException

6-17



6 Reference Information for Java

{
(implementation omitted)

}

The standard interface specifies inputs to the function within the argument
list and outputs as return values.

Rather than returning function outputs as a return value, the feval interface
includes both input and output arguments in the argument list. Output
arguments are specified first, followed by input arguments.

See “APIs Based on MATLAB Function Signatures” on page 6-14 for details
about the interfaces.

6-18



MWArray Class Specification

MWArray Class Specification
For complete reference information about the MWArray class hierarchy,
see com.mathworks.toolbox.javabuilder.MWArray, which is in the
matlabroot/help/toolbox/javabuilder/MWArrayAPI/ directory.

Note For matlabroot substitute the MATLAB root directory on your system.
Type matlabroot to see this directory name.

6-19



6 Reference Information for Java

6-20



7

Functions — Alphabetical
List



deploytool

Purpose Open GUI for MATLAB Builder for Java and MATLAB Compiler

Syntax deploytool

Description The deploytool command opens the Deployment Tool dialog box, which
is the graphical user interface (GUI) for MATLAB Builder for Java
and for MATLAB Compiler.

See “Creating a Java Component” on page 1-5 to get started using
the Deployment Tool to create Java components, and see “Using the
GUI to Create and Package a Deployable Component” in the MATLAB
Compiler documentation for information about using the Deployment
Tool to create standalone applications and libraries.

7-2



A

Examples

Use this list to find examples in the documentation.



A Examples

Quick Start
“Example: Magic Square” on page 1-15

Handling Data
“Code Fragment: Passing an MWArray” on page 3-7
“Code Fragment: Passing a Java Double Object” on page 3-8
“Code Fragment: Passing an MWArray” on page 3-8
“Code Fragment: Passing Variable Numbers of Inputs” on page 3-10
“Code Fragment: Passing Array Inputs” on page 3-11
“Code Fragment: Passing a Variable Number of Outputs” on page 3-12
“Code Fragment: Passing Optional Arguments with the Standard
Interface” on page 3-13
“Code Fragment: Using MWArray Query” on page 3-16
“Handling Data Conversion Between Java and MATLAB” on page 3-28
“Examples of Using set” on page 4-19
“Examples of Using get” on page 4-20
“Examples of Using set and get Methods” on page 4-26
“Code Fragment: Signatures Generated for myprimes Example” on page
6-17

Handling Errors
“Code Fragment: Handling an Exception in the Called Function” on page
3-20
“Code Fragment: Handling an Exception in the Calling Function” on page
3-21
“Code Fragment: Catching General Exceptions” on page 3-22
“Code Fragment: Catching Multiple Exception Types” on page 3-23

A-2



Handling Memory

Handling Memory
“Code Fragment: Use try-finally to Ensure Resources Are Freed” on page
3-27

Sample Applications (Java)
“Plot Example” on page 5-2
“Spectral Analysis Example” on page 5-8
“Matrix Math Example” on page 5-16

A-3



A Examples

A-4



Index

IndexA
API

data conversion classes 3-6
MATLAB Builder for Java 4-1

arguments
optional 3-9

standard interface 3-13
optional inputs 3-10
optional outputs 3-12
passing 3-6

array API
overview 4-2

array inputs
passing 3-11

arrays
cell 4-31

constructing 4-32
character 4-26

constructing 4-27
logical 4-22

constructing 4-22
numeric 4-7

constructing 4-7

B
build output

componentLibInfo.java 2-9

C
calling interface

standard 6-15
calling methods 1-23
cell arrays 4-31

constructing 4-32
character arrays 4-26

constructing 4-27
checked exceptions

exceptions
checked 3-19

in called function 3-20
in calling function 3-21

classes
API utility 3-6
calling methods of a 1-23
creating an instance of 1-23 3-3
importing 1-23

classid 4-4
mwarray 4-41
mwcellarray 4-139
mwchararray 4-111
mwlogicalarray 4-99
mwnumericarray 4-72
mwstructarray 4-122

classpath variable 6-4
clone

mwarray 4-50
mwcellarray 4-147
mwchararray 4-116
mwlogicalarray 4-104
mwnumericarray 4-87
mwstructarray 4-133

columnindex 4-5
mwarray 4-56

com.mathworks.toolbox.javabuilder.MWArray 4-1
command-line interface 1-6
compareto

mwarray 4-51
mwcellarray 4-148
mwchararray 4-117
mwlogicalarray 4-105
mwnumericarray 4-88
mwstructarray 4-134

complexity
mwnumericarray 4-72

concepts
data conversion classes 2-4
project 2-3

Index-1



Index

constructing
cell arrays 4-32
character arrays 4-27
logical arrays 4-22
mwarrays 4-38
mwcellarrays 4-136
mwchararrays 4-108
mwlogicalarrays 4-92
mwnumericarrays 4-59
mwstructarrays 4-118
numeric arrays 4-7
sparse arrays 4-15

converting characters to MATLAB char
array 6-11

converting data 3-7
Java to MATLAB 6-10
MATLAB to Java 6-12

converting strings to MATLAB char array 6-11
create plot example 5-2
creating objects 1-23 3-3

D
data conversion 3-7

characters, strings 6-11
Java to MATLAB 6-10
MATLAB to Java 6-12
rules for Java components 6-10
unsigned integers 6-13

data conversion classes 4-1
mwarray 4-38

comparing 4-49
constructors 4-38
converting 4-49
copying 4-49
disposing 4-39
get information on 4-40
get, set 4-44
sparse 4-54

mwcellarray 4-135
comparing 4-147
constructors 4-136
converting 4-147
copying 4-147
disposing 4-137
get information on 4-138
get, set 4-140

mwchararray 4-107
comparing 4-116
constructors 4-108
converting 4-116
copying 4-116
creating 4-109
disposing 4-109
get information on 4-111
get, set 4-112

mwclassid 4-149
fields 4-149
methods 4-151

mwcomplexity 4-152
fields 4-152
methods 4-153

mwlogicalarray 4-92
comparing 4-104
constructors 4-92
converting 4-104
copying 4-104
creating 4-93
disposing 4-93
get information on 4-98
get, set 4-100
sparse 4-107

Index-2



Index

mwnumericarray 4-58
comparing 4-87
constants 4-90
constructors 4-59
converting 4-87
copying 4-87
creating 4-63
disposing 4-63
get information on 4-71
get, set: imaginary 4-79
get, set: real 4-75
sparse 4-90

mwstructarray 4-118
comparing 4-132
constructors 4-118
converting 4-132
copying 4-132
disposing 4-120
get information on 4-121
get, set 4-124

data conversion rules 3-28
deploytool function 7-2
development machine

running the application 1-21
dispose 3-26 4-5

mwarray 4-39
mwcellarray 4-138
mwchararray 4-110
mwlogicalarray 4-98
mwnumericarray 4-71
mwstructarray 4-120

disposearray 4-5
mwarray 4-40
mwcellarray 4-138
mwchararray 4-111
mwlogicalarray 4-98
mwnumericarray 4-71
mwstructarray 4-121

disposing mwarrays 4-39
disposing of mwnumericarrays 4-63

E
environment variables

classpath 6-4
java_home 6-3
ld_library_path 6-6
path 6-6
setting 6-2

equals
mwarray 4-52
mwcellarray 4-148
mwchararray 4-117
mwclassid 4-151
mwlogicalarray 4-105
mwnumericarray 4-89
mwstructarray 4-134

error handling 3-19
example applications

Java 5-1
examples

Java create plot 5-2
magic square in C# 1-15

exceptions 3-19
catching 3-22 to 3-23
checked

in called function 3-20
in calling function 3-21

general 3-22
unchecked 3-22

F
factory methods

of mwcellarray 4-34
of mwchararray 4-30
of mwlogicalarray 4-25
of mwnumericarray 4-17

fieldnames
mwstructarray 4-122

finalization 3-27
freeing native resources

Index-3



Index

try-finally 3-27

G
garbage collection 3-25
get 4-5

mwarray 4-45
mwcellarray 4-34 4-140
mwchararray 4-30 4-112
mwlogicalarray 4-25 4-100
mwnumericarray 4-17 4-76

example 4-20
mwstructarray 4-125

getboolean
mwlogicalarray 4-101

getbyte
mwnumericarray 4-78

getcell
mwcellarray 4-142

getchar
mwchararray 4-113

getdata 4-5
mwarray 4-46
mwcellarray 4-37 4-143
mwchararray 4-112
mwlogicalarray 4-100
mwnumericarray 4-76
mwstructarray 4-127

getdimensions 4-5
mwarray 4-42
mwcellarray 4-139
mwchararray 4-112
mwlogicalarray 4-100
mwnumericarray 4-72
mwstructarray 4-123

getdouble
mwnumericarray 4-76

geteps
mwnumericarray 4-91

getfield

mwstructarray 4-128
getfloat

mwnumericarray 4-77
getiamgbyte

mwnumericarray 4-85
getimag

mwnumericarray 4-81
getimagdata

mwnumericarray 4-82
getimagdouble

mwnumericarray 4-83
getimagfloat

mwnumericarray 4-84
getimagint

mwnumericarray 4-84
getimaglong

mwnumericarray 4-84
getimagshort

mwnumericarray 4-84
getinf

mwnumericarray 4-91
getint

mwnumericarray 4-77
getlong

mwnumericarray 4-77
getnan

mwnumericarray 4-92
getshort

mwnumericarray 4-77
getsize

mwclassid 4-151
GUI

icons 6-8

H
hashcode

mwarray 4-52
mwcellarray 4-148
mwchararray 4-117

Index-4



Index

mwclassid 4-151
mwlogicalarray 4-106
mwnumericarray 4-89
mwstructarray 4-134

I
importing classes 1-23
isempty 4-5

mwarray 4-42
mwcellarray 4-140
mwchararray 4-112
mwlogicalarray 4-100
mwnumericarray 4-72
mwstructarray 4-123

isfinite
mwnumericarray 4-72

isinf
mwnumericarray 4-73

isnan
mwnumericarray 4-74

isnumeric
mwclassid 4-152

issparse 4-5
mwarray 4-55

J
jagged arrays

constructing 4-11
Java application

running on the development machine 1-21
sample application

usemyclass.java 3-5
writing 5-1

java builder api
mwarray

comparing 4-49
constructors 4-38
converting 4-49
copying 4-49
disposing 4-39
get information on 4-40
get, set 4-44
sparse 4-54

mwcellarray 4-135
comparing 4-147
constructors 4-136
converting 4-147
copying 4-147
disposing 4-137
get information on 4-138
get, set 4-140

mwchararray 4-107
comparing 4-116
constructors 4-108
converting 4-116
copying 4-116
creating 4-109
disposing 4-109
get information on 4-111
get, set 4-112

mwclassid 4-149
fields 4-149
methods 4-151

mwcomplexity 4-152
fields 4-152
methods 4-153

Index-5



Index

mwlogicalarray 4-92
comparing 4-104
constructors 4-92
converting 4-104
copying 4-104
creating 4-93
disposing 4-93
get information on 4-98
get, set 4-100
sparse 4-107

mwnumericarray 4-58
comparing 4-87
constants 4-90
constructors 4-59
converting 4-87
copying 4-87
creating 4-63
disposing 4-63
get information on 4-71
get, set: imaginary 4-79
get, set: real 4-75
sparse 4-90

mwstructarray 4-118
comparing 4-132
constructors 4-118
converting 4-132
copying 4-132
disposing 4-120
get information on 4-121
get, set 4-124

Java Builder API
mwarray 4-38

Java classes 2-1
Java component

instantiating classes 3-3
Java examples 5-1
overview of creating 1-5
specifying 3-2

Java interfaces
mwarray 4-3

Java reflection 3-14
Java to MATLAB data conversion 6-10
java_home variable 6-3
JVM 3-25

L
ld_library_path variable 6-6
LibInfo.java 2-9
limitations 6-2

platform-specific 2-10 3-2
logical arrays 4-22

constructing 4-22

M
M-file method

myprimes.m 3-5
MATLAB Builder for Java

introduction 1-2
system requirements 6-2

MATLAB to Java data conversion 6-12
matrix math example

Java 5-16
maximumnonzeros 4-6

mwarray 4-57
memory

preserving 3-25
memory management

native resources 3-25
method overrides

mwarray 4-3
method signatures

standard interface
method signatures 3-8 6-14

methods
adding 5-8
calling 1-23
error handling 3-19
mwarray 4-4

Index-6



Index

mwcellarray 4-34
mwchararray 4-30
mwlogicalarray 4-25
mwnumericarray 4-17
of MWArray 3-8 3-28

multidimensional numeric arrays
constructing 4-10

mwarray 4-2 4-38
comparing 4-49
constructors 4-38
converting 4-49
copying 4-49
disposing 4-39
get, set 4-44
Java interfaces 4-3
method overrides 4-3
methods of 4-4
sparse 4-54

MWArray 3-6 4-1
MWArray class library

See also Data conversion 1-15
MWarray methods 3-8 3-28
mwarray query

return values 3-16
mwarrayget information on 4-40
mwcellarray 4-31 4-135

comparing 4-147
constructors 4-136
converting 4-147
copoying 4-147
disposing 4-137
get information on 4-138
get, set 4-140

mwcellarray methods
get 4-34
getdata 4-37
set 4-34
toarray 4-37

mwchararray 4-26 4-107
comparing 4-116

constructors 4-108
converting 4-116
copying 4-116
creating 4-109
disposing 4-109
get information on 4-111
get, set 4-112
newinstance 4-29

mwchararray methods
get 4-30
set 4-30

mwclassid
cell 4-149
char 4-150
double 4-150
fields 4-149
function 4-150
int16 4-150
int32 4-150
int64 4-150
int8 4-150
logical 4-150
methods 4-151
object 4-150
opaque 4-150
single 4-150
struct 4-150
uint16 4-150
uint32 4-151
uint64 4-151
uint8 4-150
unknown 4-151

mwcomplexity 4-152
complex 4-152
fields 4-152
methods 4-153
real 4-152

mwlogicalarray 4-22 4-92
comparing 4-104
constructors 4-92

Index-7



Index

converting 4-104
copying 4-104
creating 4-93
disposing 4-93
get information on 4-98
get, set 4-100
newinstance 4-23
newsparse 4-23
sparse 4-107

mwlogicalarray methods
get 4-25
set 4-25

mwnumericarray 4-7 4-58
comparing 4-87
constants 4-90
constructors 4-59
converting 4-87
copying 4-87
creating 4-63
disposing 4-63
get information on 4-71
get, set

imaginary 4-79
real 4-75

newinstance 4-12
newsparse 4-12
sparse 4-90

mwnumericarray methods
get 4-17
set 4-17

mwstructarray 4-118
comparing 4-132
constructors 4-118
converting 4-132
copying 4-132
disposing 4-120
get information on 4-121
get, set 4-124

myprimes.m 3-5

N
native resources

dispose 3-26
finalizing 3-27

newinstance
mwchararray 4-29 4-109
mwlogicalarray 4-23 4-94
mwnumericarray 4-12 4-63

newsparse
mwlogicalarray 4-23 4-95
mwnumericarray 4-12 4-66

numberofdimensions 4-6
mwarray 4-43
mwcellarray 4-140
mwchararray 4-112
mwlogicalarray 4-100
mwnumericarray 4-75
mwstructarray 4-123

numberofelements 4-6
mwarray 4-43
mwcellarray 4-140
mwchararray 4-112
mwlogicalarray 4-100
mwnumericarray 4-75
mwstructarray 4-123

numberoffields
mwstructarray 4-123

numberofnonzeros 4-6
mwarrays 4-58

numeric arrays 4-7
constructing 4-7

numeric matrices
constructing 4-10

O
objects

creating 1-23 3-3
operating system issues 2-10 3-2
optional arguments 3-9

Index-8



Index

input 3-10
output 3-12
standard interface 3-13

P
passing arguments 3-6
passing array inputs 3-11
passing data

matlab to java 2-7
path variable 6-6
platform issues 2-10 3-2
portability 2-10 3-2
programming

overview 1-12
project

elements of 2-3

R
requirements

system 6-2
resource management 3-25
restrictions 6-2
return values

handling 3-14
java reflection 3-14
mwarray query 3-16

rowindex 4-6
mwarray 4-57

S
set 4-6

mwarray 4-47
mwcellarray 4-34 4-144
mwchararray 4-30 4-114
mwlogicalarray 4-25 4-102
mwnumericarray 4-17 4-79

example 4-19
mwstructarray 4-129

setimag
mwnumericarray 4-85

setting environment variables 6-2
sharedcopy 4-7

mwarray 4-53
mwcellarray 4-148
mwchararray 4-117
mwlogicalarray 4-106
mwnumericarray 4-89
mwstructarray 4-134

sparse
mwlogicalarray 4-107
mwnumericarray 4-90

sparse arrays 4-54
constructing 4-15

standard interface 6-15
passing optional arguments 3-13

system requirements 6-2

T
toarray 4-7

mwarray 4-48
mwcellarray 4-37 4-146
mwchararray 4-116
mwlogicalarray 4-104
mwnumericarray 4-79
mwstructarray 4-131

toimagarray
mwnumericarray 4-86

toolbar
icons 6-8

tostring
mwarray 4-54
mwcellarray 4-149
mwchararray 4-118
mwclassid 4-152
mwcomplexity 4-153
mwlogicalarray 4-106
mwnumericarray 4-89

Index-9



Index

mwstructarray 4-135
try-finally 3-27

U
unchecked exceptions 3-22
usage information

data conversion classes 4-1

getting started 1-1
sample Java applications 5-1

usemyclass.java application 3-5
utility classes

base class 4-2
overview 4-2

Index-10


	toc
	Getting Started
	What Is MATLAB Builder for Java?
	Support for MATLAB Features in Java
	Known Issue in Data Returned by toArray Referencing Sparse Forma
	Using the Deployment Tool

	Creating a Java Component
	Using the Command-Line Interface

	Developing an Application
	Deploying an Application
	Example: Magic Square
	This example shows you how to:
	Magic Square Example: Step-by-Step Procedure
	getmagic.java

	Understanding the Magic Square Example
	Importing Classes
	Creating an Instance of the Class
	Calling Class Methods from Java

	For More Information

	Concepts
	What Is a Project?
	Classes and Methods
	Naming Conventions

	How Does MATLAB Builder for Java Handle Data?
	Understanding the API Data Conversion Classes
	Overview of Classes and Methods in the Data Conversion Class Hie
	Advantage of Using Data Conversion Classes

	Automatic Conversion to MATLAB Types
	Understanding Function Signatures Generated by Java Builder
	Understanding MATLAB Function Signatures
	Overloaded Methods in Java That Encapsulate M-Code

	Returning Data from MATLAB to Java

	What Happens in the Build Process?
	What Happens in the Package Process?
	How Does Component Deployment Work?

	Programming
	Import Classes
	Creating an Instance of the Class
	Code Fragment: Instantiating a Java Class
	myprimes Function


	Passing Arguments to and from Java
	Manual Conversion of Data Types
	Code Fragment: Using MWNumericArray

	Automatic Conversion to a MATLAB Type
	Code Fragment: Automatic Data Conversion
	Code Fragment: Passing a Java Double Object
	Code Fragment: Passing an MWArray
	Code Fragment: Calling MWArray Methods
	Changing the Default by Specifying the Type

	Specifying Optional Arguments
	Code Fragment: Passing Variable Numbers of Inputs
	Code Fragment: Passing a Variable Number of Outputs

	Handling Return Values
	Code Fragment: Using Java Reflection
	Code Fragment: Using MWArray Query


	Handling Errors
	Handling Checked Exceptions
	Code Fragment: Handling an Exception in the Called Function
	Code Fragment: Handling an Exception in the Calling Function

	Handling Unchecked Exceptions
	Code Fragment: Catching General Exceptions
	Code Fragment: Catching Multiple Exception Types


	Managing Native Resources
	Using Garbage Collection Provided by the JVM
	Using the dispose Method
	Code Fragment: Using dispose
	Code Fragment: Use try-finally to Ensure Resources Are Freed

	Overriding the Object.Finalize Method

	Handling Data Conversion Between Java and MATLAB
	Calling MWArray Methods
	Specifying the Type



	Using MWArray Classes
	Guidelines for Working with MWArray Classes
	Overview of the MWArray API
	Understanding the MWArray Base Class
	Accessing Elements of the Arrays
	Method Overrides Implemented by MWArray
	Java Interfaces Implemented by MWArray
	Additional MWArray Methods

	Constructing Numeric Arrays
	Overview of Constructors and Data Types
	Constructing Different Types of Numeric Arrays
	Constructing Complex Arrays
	Constructing Matrices
	Constructing N-Dimensional Arrays
	Constructing Jagged Arrays

	Using Static Factory Methods to Construct MWNumericArrays
	Constructing Sparse Arrays
	Accessing MWNumericArray Elements

	Working with Logical Arrays
	Constructing an MWLogicalArray
	Using Static Factory Methods to Create MWLogicalArrays
	Accessing MWLogicalArray Elements

	Working with Character Arrays
	Constructing an MWCharArray
	Using Static Factory Methods for Constructing MWCharArrays
	Accessing MWCharArray Elements

	Working with Cell Arrays
	Using MWCellArray Constructors
	Accessing MWCellArray Elements
	toArray and getData Methods


	Using Class Methods
	Using MWArray
	Constructing an MWArray
	Example . Construct an empty MWArray object:

	Methods to Create and Destroy an MWArray
	Input Parameters
	Example — Constructing an MWArray Object
	Input Parameters
	Example — Constructing an MWNumericArray Object

	Methods to Return Information About an MWArray
	Input Parameters
	Example — Getting the Class ID of an MWArray
	Input Parameters
	Example — Getting Array Dimensions of an MWArray
	Input Parameters
	Example — Testing for an Empty MWArray
	Input Parameters
	Example — Getting the Number of Dimensions of an MWArray
	Input Parameters
	Example — Getting the Number of MWArray Elements

	Methods to Get and Set Data in the MWArray
	Input Parameters
	Exceptions
	Example — Getting an MWArray Value with get
	Input Parameters
	Example — Getting an MWArray Value with getData
	Input Parameters
	Exceptions
	Example — Setting an MWArray Value
	Input Parameters
	Example — Getting an MWArray with toArray

	Methods to Copy, Convert, and Compare MWArrays
	Input Parameters
	Exceptions
	Example — Cloning an MWArray Object
	Input Parameters
	Example — Comparing MWArrays with compareTo
	Input Parameters
	Example — Comparing MWArrays with equals
	Input Parameters
	Example — Getting an MWArray Hash Code
	Input Parameters
	Example — Making a Shared Copy of an MWArray
	Input Parameters
	Example — Converting an MWArray to a String

	Methods to Use on Sparse MWArrays
	Input Parameters
	Example — Testing an MWArray for Sparseness
	Input Parameters
	Example — Getting the Column Indices of a Sparse MWArray
	Input Parameters
	Example — Getting the Row Indices of a Sparse MWArray
	Input Parameters
	Example — Getting the Maximum Number of Nonzeros in an MWArray
	Input Parameters.
	Example — Getting the Number of Nonzeros in an MWArray


	Using MWNumericArray
	Constructing an MWNumericArray
	Example — Constructing an Empty Numeric Array Object
	Exceptions
	Example — Constructing an Integer Array Object
	Example — Constructing a Complex Array Object
	Example — Constructing a Real Array of a Specific Type
	Example — Constructing a Complex Array of a Specific Type

	Methods to Create and Destroy an MWNumericArray
	Input Parameters
	Exceptions
	Example — Constructing a Numeric Array Object with newInstance
	Constructing a Sparse Matrix with No Nonzero Elements
	Constructing a Sparse Matrix of Real Numbers
	Constructing a Sparse Matrix of Complex Numbers
	Input Parameters
	Exceptions
	Example — Constructing a Sparse Array Object with newSparse
	Example — Using newSparse with Row and Column Indices
	Example — Assigning Multiple Values to a Single Array Element

	Methods to Return Information About an MWNumericArray
	Input Parameters
	Example — Testing for a Complex Array
	Input Parameters
	Example — Testing for Finite Array Values
	Input Parameters
	Example — Testing for Infinite Array Values
	Input Parameters
	Example — Testing for NaN Array Values

	Methods to Get and Set the Real Parts of an MWNumericArray
	Example — Getting a Short Value from a Numeric Array
	Example — Using get and set on a Numeric Array

	Methods to Get and Set the Imaginary Parts of an MWNumericArray
	Example — Getting the Real and Imaginary Parts of an Array
	Example — Getting Data from a Complex Array
	Example — Getting Complex Data of a Specific Type
	Exceptions
	Input Parameters
	Example — Getting Complex Data with toImagArray

	Methods to Copy, Convert, and Compare MWNumericArrays
	Input Parameters
	Exceptions
	Example — Cloning a Numeric Array Object
	Input Parameters
	Example — Making a Shared Copy of a Numeric Array Object

	Methods to Use on Sparse MWNumericArrays
	Methods to Return Special Constant Values
	Input Parameters
	Exceptions
	Input Parameters
	Exceptions
	Input Parameters
	Exceptions


	Using MWLogicalArray
	Constructing an MWLogicalArray
	Example — Constructing an Initialized Logical Array Object

	Methods to Create and Destroy an MWLogicalArray
	Input Parameters
	Exceptions
	Example — Constructing a Logical Array Object with newInstance
	Supported Prototypes
	Input Parameters
	Exceptions
	Example — Constructing a Sparse Logical Array Object

	Methods to Return Information About an MWLogicalArray
	Input Parameters
	Example — Getting the Class ID for a Logical Array Object

	Methods to Get and Set Data in an MWLogicalArray
	Input Parameters
	Exceptions
	Example — Getting a Boolean Value from a Logical Array
	Input Parameters
	Exceptions
	Example — Setting a Value in a Logical Array

	Methods to Copy, Convert, and Compare MWLogicalArrays
	Input Parameters
	Exceptions
	Example — Cloning a Logical Array Object
	Input Parameters
	Example — Making a Shared Copy of a Logical Array Object

	Methods to Use on Sparse MWLogicalArrays

	Using MWCharArray
	Constructing an MWCharArray
	Input Parameters
	Example — Constructing an Initialized Character Array Object

	Methods to Create and Destroy an MWCharArray
	Input Parameters
	Example — Constructing a Character Array Object with newInstance

	Methods to Return Information About an MWCharArray
	Input Parameters
	Example — Getting the Class ID of a Character Array

	Methods to Get and Set Data in the MWCharArray
	Input Parameters
	Exceptions
	Example — Getting Character Array Data with getChar
	Input Parameters
	Exceptions
	Example — Setting Values in a Character Array

	Methods to Copy, Convert, and Compare MWCharArrays
	Input Parameters
	Example — Cloning a Character Array Object
	Input Parameters
	Example — Making a Shared Copy of a Character Array Object


	Using MWStructArray
	Constructing an MWStructArray
	Input Parameters
	Example — Constructing a Structure Array Object

	Methods to Destroy an MWStructArray
	Input Parameters
	Example — Disposing of a Structure Array Object

	Methods to Return Information About an MWStructArray
	Input Parameters
	Example — Getting the Class ID of a Structure Array
	Input Parameters
	Example — Getting the Field Names of a Structure Array
	Input Parameters
	Example — Getting the Number of Fields in a Structure Array

	Methods to Get and Set Data in the MWStructArray
	Input Parameters
	Exceptions
	Example — Getting Structure Array Data with get
	Input Parameters
	Example — Getting Structure Array Data with getData
	Input Parameters
	Exceptions
	Input Parameters
	Exceptions
	Example — Setting Values in a Structure Array
	Input Parameters
	Example — Getting Structure Array Data with toArray

	Methods to Copy, Convert, and Compare MWStructArrays
	Input Parameters
	Exceptions
	Example — Cloning a Structure Array Object
	Input Parameters
	Example — Making a Shared Copy of a Structure Array Object


	Using MWCellArray
	Constructing an MWCellArray
	Input Parameters
	Exceptions
	Example — Constructing an Empty Cell Array Object
	Example — Constructing an Initialized Cell Array Object

	Methods to Destroy an MWCellArray
	Input Parameters
	Example — Disposing of a Cell Array Object

	Methods to Return Information About an MWCellArray
	Input Parameters
	Example — Getting the Class ID of a Cell Array

	Methods to Get and Set Data in the MWCellArray
	Input Parameters
	Exceptions
	Example — Getting Data from a Cell Array with get
	Input Parameters
	Exceptions
	Input Parameters
	Example — Getting Cell Array Data with getData
	Input Parameters
	Exceptions
	Example — Setting Values in a Cell Array
	Input Parameters
	Example — Getting Cell Array Data with toArray

	Methods to Copy, Convert, and Compare MWCellArrays
	Input Parameters
	Exceptions
	Example — Cloning a Cell Array Object
	Input Parameters
	Example — Making a Shared Copy of a Cell Array Object


	Using MWClassID
	Fields of MWClassID
	Example — Specifying an MWClassID Value


	Using MWComplexity
	Fields of MWComplexity
	Example – Determining the Complexity of an Array




	Sample Applications (Java)
	Plot Example
	The purpose of the example is to show you how to do the followin
	Plot Example: Step-by-Step Procedure
	createplot.java

	Spectral Analysis Example
	The purpose of the example is to show you the following:
	computefft.m 
	plotfft.m
	Spectral Analysis Example: Step-by-Step Procedure
	powerspect.java

	Matrix Math Example
	The purpose of the example is to show you the following:
	MATLAB Functions to Be Encapsulated
	cholesky.m
	ludecomp.m
	qrdecomp.m
	Matrix Math Example: Step-by-Step Procedure
	getfactor.java
	Output for the Matrix Math Example
	Output for a Sparse Matrix

	Understanding the getfactor Program


	Reference Information for Java
	Requirements for MATLAB Builder for Java 
	System Requirements
	Limitations and Restrictions
	Settings for Environment Variables (Development Machine)
	JAVA_HOME Variable
	Java CLASSPATH Variable
	Native Library Path Variables


	MATLAB Builder for Java Graphical User Interface
	Data Conversion Rules
	Java to MATLAB Conversion
	MATLAB to Java Conversion
	Unsupported MATLAB Array Types

	Programming Interfaces Generated by Java Builder
	APIs Based on MATLAB Function Signatures
	Standard API
	mlx API
	Code Fragment: Signatures Generated for myprimes Example

	MWArray Class Specification

	Functions — Alphabetical List
	Examples
	Quick Start
	Handling Data
	Handling Errors
	Handling Memory
	Sample Applications (Java)

	Index

	tables
	Using the Command Line to Create Java Components 
	Overrides
	Java Interfaces Implemented by MWArray
	Toolbar Icons
	Java to MATLAB Conversion Rules
	MATLAB to Java Conversion Rules 


